• 제목/요약/키워드: Forward extrusion

검색결과 99건 처리시간 0.025초

상계요소법에 의한 축대칭 압출의 최종공정에서의 파이핑 발생에 관한 연구 (A Study on the Piping Defect at The Final Stage of Axisymmetric Extrusion by Upper Bound Element Technique)

  • 최재찬;최인근
    • 소성∙가공
    • /
    • 제3권1호
    • /
    • pp.23-37
    • /
    • 1994
  • The upper bound element technique(UBET) is used to analyze the final stage of the axisymmetric forward extrusion. Kinematically admissible velocity field involving curved surface of velocity discontinuity is assumed. The required power to arise the piping defect is obtained and is compared with Aviture's solution a the same condition. Conditions for inception of the cavity and development of the pipe are predicted. The internal radius of the pipe and critical length of billet are also determined. Experiments are carried out for extrusion with lead specimens to investigate the piping phenomena. The theoretically predicted results showed reasonably good agreement with the experimental observation.

  • PDF

소결 금속 의 압출 에 관한 연구 (Extrusion of Sintered Porous Metal)

  • 오흥국;이정근
    • 대한기계학회논문집
    • /
    • 제8권1호
    • /
    • pp.57-64
    • /
    • 1984
  • Forward extrusion of sintered porous metal through conical converging die is analyzed using slab method on the basis of plasticity theory for porous metal. It is taken into consideration in the analysis that the material in the container is continuously recompressed on densified until the process reaches steady state. Extrusion pressure and distribution of relative density from the die inlet to the outlet are calculated under various process variables. The results are useful in finding initial relative density of the billet, reduction of area and cone angle of the die in order to get required final products. Experiments are done for porous copper and then compared with the computed results.

축대칭 제품을 위한 프레스 냉간단조 금형의 자동설계 기술 (An Automated CAD System for Press Die Design in Cold Forging of Axisymmetric Parts)

  • 김종호;류호연;홍기곤
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.87-94
    • /
    • 1999
  • The automated die design program is developed for cold forging of axisymmetric parts which are mainly produced by forward extrusion, backward extrusion, composite extrusion and upsetting. For this study, firstly classification of forged parts and investigation of die construction type usually employed in forging industry are carried out and the most proper type from several kinds of die construction is proposed as a standardized one. Based on the die design rules summarized in the references such as handbooks, technical papers, monthly journals, etc. the automated die design program was made using AutoLISP language available in AutoCAD software of personal computer. This program interactively runs for only input data, for example, forging process, shape of forged parts, type of punch, split of die insert and design of shrinkage rings and then displays details of drawings necessary to make a forging die. When a variety of forging processes and forged parts are tested to examine the validity of this program, it was confirmed to give good results applicable to the forging die design in press shop.

  • PDF

냉간 압출된 유성기어의 내부결함 방지 (Prevention of Internal Defects of Cold Extruded Planetary Gears)

  • 이정환;최종웅;이영선;최상호
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF

냉간 비조질강을 이용한 볼 스터드의 정형가공 공정연구 (Net Shape Forming Process for Ball Stud Using High Strength Micro-Alloyed Cold Forging Steel)

  • 윤덕재;최호준;이형욱;이근안;장병록;서성렬;최석우
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.562-567
    • /
    • 2006
  • Micro-alloyed steel or heat-treatment-free used in clean technology have been replacing for conventional quenched-and-tempered structural steels since the micro-alloyed forging steel was developed in early 1970s in Germany for saving money of heat treatment, simplified process, short delivery and good productivity. In this paper, ball stud assembled in steering system for automobile was selected to compare conventional process making heat treatment with new process using high strength micro-alloyed steel without heat treatment. The conventional process for ball stud was composed of a total of 6 steps including upsetting, forward extrusion, machining, burnishing and tread rolling with heat treatment and shot blasting. As opposed to conventional process, newly proposed process for ball stud using the clean technology without heat treatment is simplified such as forward extrusion, heading, upsetting, forming having a flange shape and tread rolling. Also net shape forming process to achieve specified process not to include machined step fur manufacturing the ball stud was applied to newly simplified process since micro-alloyed steel is difficult to be formed.

스테인리스강 압출금형의 마멸 감소를 위한 설계 (Design of STS304 Extrusion Die for Wear Reduction)

  • Kim, T.H.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.106-113
    • /
    • 1996
  • Using stainless steel as the cold forged parts especially the outer parts of automobile is gradually increasing because it can bear up against the erosion and the wear. During cold forging of the stainless steel the working pressure acting on die surface are very high therefore the wear on die surface can be greatly increased. In cold forging processes, die failure must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The die wear affects the tolerances of forged parts, metal flow and costs of processes etc. The only way to to control these failures is to develop methods which allow prediction of the die wear and which are suited to be used in the desing stage in order to optimize the process. In this paper, the rigid-plastic finite element method was combined with the wear prediction routine and then the forward extrusion process using stainless steel was analysed simultaneously. To minimize the die wear the FPS algorithm was applied and the optimal conditions of die configuration are suggested.

  • PDF

The Effect of Cold Forging on Carburizing Microstructure

  • Yanjun Huo;Baixuan Liu;Qingpo Xi;Hua Liu
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.40-42
    • /
    • 2003
  • The aim of this paper is to illustrate which factors influence the martensite grain fineness made by subsequently surface carburizing of extruded component. The effects of surface decarburizing by annealing, residual stress, initial microstructure and crystal oriental made by forward extrusion were taken into account. The available evidence suggests that the residual stress inside crystal or the crystal orientation is the main factor that results coarse martensite while cold extruded component was treated by carburizing.

  • PDF

유동제어를 통한 자동차용 피스톤-펀의 공정설계 (Process Design of Piston-Pin for Automobile by the Flow Control)

  • 김동진;김병민;이동주
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.151-159
    • /
    • 2001
  • Flow defect of a piston-pin for automobile parts is investigated in this study. In combined cold extrusion of piston-pin, lapping defect, which is a kind of flow defect, appears by the dead metal zone. This appearance evidently happens in products with a thin thickness to be pierced for the dimensional accuracy and the decrease of material loss. The flow defect that occurs in piston-pin has bad effects on the strength and the fatigue life of piston-pin. Therefore, it is important to predict and prevent defects in the early stage of process design. The best method that can prevent flow defect is removing or reducing dead metal zone through material flow control. The finite element simulations are applied to analyze the flow defect. This study proposes processes for preventing flow defect by removing dead metal zone. Then the results are compared with the experimental ones for verification. These FE simulation results are in good agreement with the experimental ones.

  • PDF