• Title/Summary/Keyword: Forward blocking characteristic

Search Result 3, Processing Time 0.017 seconds

A Study on the Electrical Characteristics in the Static Induction Transistor with Trench Oxide (트렌치 산화막을 갖는 정전유도트랜지스터의 전기적 특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Je-Yoon;Hong, Seung-Woo;Sung, ManYoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • In this paper, two types of vertical SIT(Static Induction Transistor) structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. First, a trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. Second, a trench gate-source region power SIT device is proposed to obtain more higher forward blocking voltage and forward blocking characteristics at the same size. The two proposed devices have superior electrical characteristics when compared to conventional device. In the proposed trench gate oxide power SIT, the forward blocking voltage is considerably improved by using the vertical trench oxide and the forward blocking voltage is 1.5 times better than that of the conventional vertical power SIT. In the proposed trench gate-source oxide power SIT, it has considerable improvement in forward blocking characteristics which shows 1500V forward blocking voltage at -10V of the gate voltage. Consequently, the proposed trench oxide power SIT has the superior stability and electrical characteristics than the conventional power SIT.

Study on Design and Fabrication of Power SIT (전력 SIT 소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Park, Sang-Won;Jung, Min-Cheol;Yoo, Woo-Jang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.196-197
    • /
    • 2006
  • In this paper, two types of vertical SIT(Static Induction Transistor) structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. First, a trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. Second, a trench gate-source region power SIT device is proposed to obtain more higher forward blocking voltage and forward blocking characteristics at the same size. The two proposed devices have superior electrical characteristics when compared to conventional device. In the proposed trench gate oxide power SIT, the forward blocking voltage is considerably improved by using the vertical trench oxide and the forward blocking voltage is 1.5 times better than that of the conventional vertical power SIT. In the proposed trench gate-source oxide power SIT, it has considerable improvement in forward blocking characteristics which shows 1500V forward blocking voltage at -10V of the gate voltage. Consequently, the proposed trench oxide power SIT has the superior stability and electrical characteristics than the conventional power SIT.

  • PDF

Study on the Characteristic Analysis and the Design of the IGBT Structure with Trap Injection for Improved Switching Characteristics (트랩 주입의 구조적 설계에 따른 LIGBT의 전기적 특성 개선에 관한 연구)

  • Gang, Lee-Gu;Chu, Gyo-Hyeok;Kim, Sang-Sik;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.463-467
    • /
    • 2000
  • In this paper, the new LIGBT structures with trap injection are proposed to improve switching characteristics of the conventional SOI LIGBT. The Simulations are performed in order to investigate the effects of the positiion, whidth and concentration of trap injection region with a reduced minority carrier lifetime using 2D device simulator MEDICI. Their electrical characteristics are analyzed and the optimum design parameters are extracted. As a result of simulation, the turn off time for the model A with the trap injection is $0.78\mus$. These results indicate the improvement of about 2 times compared with the conventional SOI LIGBT because trap injection prevents minority carriers which is stored in the n-drift region during turn off switching. The latching current is $1.5\times10^{-4}A/\mum$ and forward blocking voltage is 168V which are superior to those of conventional structure. It is shown that the trap injection is very effective to reduce the turn off time with a little increasing of on-state voltage drop if its design and process parameters are optimized.

  • PDF