• Title/Summary/Keyword: Forward and Backward bifurcations

Search Result 2, Processing Time 0.019 seconds

DRINKING AS AN EPIDEMIC: A MATHEMATICAL MODEL WITH DYNAMIC BEHAVIOUR

  • Sharma, Swarnali;Samanta, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.1-25
    • /
    • 2013
  • In this paper we have developed a mathematical model of alcohol abuse. It consists of four compartments corresponding to four population classes, namely, moderate and occasional drinkers, heavy drinkers, drinkers in treatment and temporarily recovered class. Basic reproduction number $R_0$ has been determined. Sensitivity analysis of $R_0$ identifies ${\beta}_1$, the transmission coefficient from moderate and occasional drinker to heavy drinker, as the most useful parameter to target for the reduction of $R_0$. The model is locally asymptotically stable at disease free or problem free equilibrium (DFE) $E_0$ when $R_0$ < 1. It is found that, when $R_0$ = 1, a backward bifurcation can occur and when $R_0$ > 1, the endemic equilibrium $E^*$ becomes stable. Further analysis gives the global asymptotic stability of DFE. Our aim of this analysis is to identify the parameters of interest for further study with a view for informing and assisting policy-makers in targeting prevention and treatment resources for maximum effectiveness.

DYNAMICAL BEHAVIOUR OF A DRINKING EPIDEMIC MODEL

  • Sharma, Swarnali;Samanta, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.747-767
    • /
    • 2013
  • In this paper we have constructed a mathematical model of alcohol abuse which consists of four compartments corresponding to four population classes, namely, moderate and occasional drinkers, heavy drinkers, drinkers in treatment and temporarily recovered class. Basic reproduction number $R_0$ has been determined and sensitivity analysis of $R_0$ indicates that ${\beta}1$ (the transmission coefficient from moderate and occasional drinker to heavy drinker) is the most useful parameter for preventing drinking habit. Stability analysis of the model is made using the basic reproduction number. The model is locally asymptotically stable at disease free or problem free equilibrium (DFE) $E_0$ when $R_0&lt;1$. It is found that, when $R_0=1$, a backward bifurcation can occur and when $R_0&gt;1$, the endemic equilibrium $E^*$ becomes stable. Further analysis gives the global asymptotic stability of DFE under some conditions. Our important analytical findings are illustrated through computer simulation. Epidemiological implications of our analytical findings are addressed critically.