• Title/Summary/Keyword: Forward Collision Warning

Search Result 39, Processing Time 0.033 seconds

Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types (후미등 하단 학습기반의 차종에 무관한 전방 차량 검출 시스템)

  • Ki, Minsong;Kwak, Sooyeong;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.609-620
    • /
    • 2016
  • Recently, there are active studies on a forward collision warning system to prevent the accidents and improve convenience of drivers. For collision evasion, the vehicle detection system is required. In general, existing learning-based vehicle detection methods use the entire appearance of the vehicles from rear-view images, so that each vehicle types should be learned separately since they have distinct rear-view appearance regarding the types. To overcome such shortcoming, we learn Haar-like features from the lower part of the vehicles which contain tail lights to detect vehicles leveraging the fact that the lower part is consistent regardless of vehicle types. As a verification procedure, we detect tail lights to distinguish actual vehicles and non-vehicles. If candidates are too small to detect the tail lights, we use HOG(Histogram Of Gradient) feature and SVM(Support Vector Machine) classifier to reduce false alarms. The proposed forward vehicle detection method shows accuracy of 95% even in the complicated images with many buildings by the road, regardless of vehicle types.

Design of level crossing VMS(Variable Message Signs) system (철도건널목 실시간 정보현시장치 개발(I))

  • Cho, Bong-Kwan;Hwang, Hyeon-Chyeol;Cho, Hong-Sik;Lee, Ho-Yong;Lee, An-Ho;Ryu, Sang-Hwan;Choi, Ho-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1183_1184
    • /
    • 2009
  • The synchronized visual message system device of level crossing provides warning system with the use of developed corresponding technology when the train is approaching forward to limited distance in level crossing. To ensure of safety driving for coming transit from road, it detect the location and velocity of train and transport the information to wayside warning device to prevent the collision with train. This paper is about the detailed design of synchronize VMS for passing transit at the level crossing and develop the physical contents of level crossing VMS with expression words, operational device, massage transportation algorism which are based on the proto type study of communication method and information contents for level crossing VMS.

  • PDF

Simple Method for Improving the Frequency Sweep Linearity of FMCW Collision Warning Radar (차량 충돌방지용 FMCW 레이더의 주파수 Sweep 선형성 개선을 위한 간단한 기법)

  • Hyun, Eu-Gin;Oh, Woo-Jin;Lee, Jong-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1109-1115
    • /
    • 2010
  • FMCW(Frequency Modulation Continuous Wave) Radar can detect the distance and the velocity of forward obstacles using linearly modulated FM signal. For better performance, the RF of radar should be operated with wideband frequency linearity on 300 MHz bandwidth at 77 GHz carrier frequency. In this paper, we propose a simple method for improving frequency linearity of FMCW radar implemented with VCO. The proposed method shows that the Voltage-Frequency relation of VCO could be measured by using the modified Tx waveform of FMCW radar. Then the measured nonlinearity could be compensated using LUT(Look-up Table) with easy. It is noted that the proposed can be adopted in existing system without extra circuit.

Development of Millimeter wave Radar Front-end for Automobile (차량용 밀리파 레이더 프론트엔드의 개발)

  • Shin, Cheon-Woo;Lee, Kyu-Han;Park, Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.53-56
    • /
    • 2001
  • This paper has been developed a millimeter-wave radar to prevent car collision. This system needs to progress the problem as follows; (1) Increase of traffic accidents causing damage and injuries due to the increased number of motor vehicles and long distance driving, (2) Need for a device to help drivers who are in trouble due to bad weather conditions. (3) Need for a millimeter-wave radar as obstacles which need to be detected are small. This system is composited with some major technologies, Narrow beams to recognize obstacles or other objects, One-side circuit technology to prevent interference between electric waves, and Parts designed for radar products which are able to transmit millimeter - waves. The system has a various a application Field, Car distance auto-control system, prevent bump collision due to unexpected stoppage of the front car or careless driving, obstacle warning system, Car following system, and industrial and military purposes system. We have a looking forward to propose to develop field tests under various road conditions and hybrid car sensor by combining with other sensors

  • PDF

The Analysis of Bus Traffic Accident to Support Safe Driving for Bus Drivers (버스운전자 안전운행지원을 위한 교통사고 분석 연구)

  • BHIN, Miyoung;SON, Seulki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.14-26
    • /
    • 2019
  • For bus drivers' safe driving, a policy that analyzes the causes of the drivers' traffic accidents and then assists their safe driving is required. Therefore, the Ministry of Land, Infrastructure and Transport set up its plan to gradually expand the equipping of commercial vehicles with FCWS (Forward Collision Warning System) and LDWS(Lane Departure Warning System), from the driver-supporting ADAS(Advanced Driver Assistance Systems). However, there is not much basic research on the analysis of bus drivers' traffic accidents in Korea. As such, the time is appropriate to research what is the most necessary ADAS for bus drivers going forward to prevent bus accidents. The purpose of this research is to analyze how serious the accidents were in the different bus routes and whether the accidents were repetitive, and to give recommendations on how to support ADAS for buses, as an improvement. A model of ordered logit was used to analyze how serious the accidents were and as a result, vehicle to pedestrian accidents which directly affected individuals were statistically significant in all of the models, and violations of regulations, such as speeding, traffic signal violation and violation of safeguards for passengers, were indicated in common in several models. Therefore, the pedestrian-sensor system and automatic emergency control device for pedestrian should be installed to reduce bus accidents directly affecting persons in the future, and education for drivers and ADAS are to be offered to reduce the violations of regulations.

A Study on Evaluation Method of AEB Test (AEB 시험평가 방법에 관한 연구)

  • Kim, BongJu;Lee, SeonBong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.20-28
    • /
    • 2018
  • Currently, sharp increase of car is on the rise as a serious social problem due to loss of lives from car accident and environmental pollution. There is a study on ITS (Intelligent Transportation System) to seek coping measures. As for the commercialization of ITS, we aim for occupancy of world market through ASV (Advanced Safety Vehicle) related system development and international standardization. However, the domestic environment is very insufficient. Core factor technologies of ITS are Adaptive Cruise Control, Lane Keeping Assist System, Forward Collision Warning System, AEB (Autonomous Emergency Braking) system etc. These technologies are applied to cars to support driving of a driver. AEB system is stop the car automatically based on the result decided by the relative speed and distance with obstacle detected through sensor attached on car rather than depending on the driver. The purpose of AEB system is to measure the distance and speed of car and to prevent accident. Thus, AEB will be a system useful for prevention of accident by decreasing car accident along with the development of automobile technology. This study suggests a scenario to suggest a test evaluation method that accords with domestic environment and active response of international standard regarding the test evaluation method of AEB. Also, by setting the goal with function for distance, it suggests theoretic model according to the result. And the study aims to verify the theoretic evaluation standard per proposed scenario using car which is installed with AEB device through field car driving test on test road. It will be useful to utilize the suggested scenario and theoretical model when conducting AEB test evaluation.

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

Robust Road Detection using Adaptive Seed based Watershed Segmentation (적응적 Seed를 기초로한 분수계 분할을 이용한 차도영역 검출)

  • Park, Han-dong;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.687-690
    • /
    • 2015
  • Forward collision warning systems(FCWS) and lane change assist systems(LCAS) need regions of interest for detecting lanes and objects as road regions. Watershed segmentation is effective algorithm that classify the road. That algorithm is split results appear differently depending on Watershed line with local minimum in the early part of the seed. If not road regions or vehicles combined the road's seed, It segment road with the others. For compensate the that defect, It has to adaptive change by road environment. The method is that image segmentate the several of regions of interest. Then It is set in a straight line that is detected in regions of interest. If It was detected cars on seed, seed is adjusted the location. And If It wasn't include the line, seed is adjusted the length for final decision the seed. We can detect the road region using the final seed that selected according to the road environment.

  • PDF

Performance Evaluation of V2X Communication System Under a High-Speed Driving (고속 주행 환경에서의 V2X 통신 성능 측정 시스템)

  • Kang, Bo-young;Bae, Jeongkyu;Seo, Woo-Chang;Park, Jong Woo;Yang, EunJu;Seo, Dae-Wha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1069-1076
    • /
    • 2017
  • C-ITS(Cooperative-Intelligent Transportation System) provides services that require strict real-time such as forward collision warning, road safety service and emergency stop. WAVE(Wireless Access in Vehicular Environments), a core technology of C-ITS, is a technology designed for high-speed driving. However, in order to provide stable communication service by applying to real road environment, various performance tests of real vehicular environment are required. In the real road environment, WAVE communication performance is influenced by the surrounding environment such as moving vehicle, road shape and topography. Especially, when the vehicle is moving at high speed, the traveling position according to the speed of the vehicle, The surrounding environment changes rapidly. Such changes are factors affecting the communication performance, therefore a system and methods for analyzing them are needed. In this paper, we propose the configuration and test method of an effective performance evaluation system under high-speed driving and describe the results of analyzing the communication performance based on the data measured through the actual vehicle test.