• Title/Summary/Keyword: Formwork Design

Search Result 83, Processing Time 0.017 seconds

Analysis of Factors for Improvement of Economic Feasibility of Construction Cost to Spread Application of OSC Construction Method for Apartment Housing (공동주택 OSC공법 적용 확산을 위한 공사비 분야 경제성 개선 요인 분석 - PC 부재 설계, 제작, 운송, 시공을 중심으로 -)

  • Yun, WonGun;Shin, Eun-Young;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.6
    • /
    • pp.55-63
    • /
    • 2021
  • Recently, as the problem of the traditional on-site labor-intensive construction production method has been raised due to changes in construction work labor and site conditions, the OSC method is gradually spreading as an alternative to this. Even in apartment houses, the application of the PC method is expanding centered on the underground parking lot, but the high cost structure is a problem compared to the conventional formwork method. In this study, factors affecting the calculation of construction cost in the economic evaluation, which are the core of determining the construction method for apartment buildings, are derived through domestic and foreign literature review and expert advice, the importance was analyzed through an opinion survey targeting industry experts. The measures to reduce construction cost were mainly derived from the improvement of the design and manufacturing process. It is expected that the factors affecting the construction cost and improvement measures of the PC method derived from this study will serve as a direction for technology development to spread the application of the PC method for apartment houses in the future.

Strength Analysis of 3D Concrete Printed Mortar Prism Samples (3D 콘크리트 프린팅된 모르타르 프리즘 시편의 강도 분석)

  • Kim, Sung-Jo;Bang, Gun-Woong;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.227-233
    • /
    • 2022
  • The 3D-printing technique is used for manufacturing objects by adding multiple layers, and it is relatively easy to manufacture objects with complex shapes. The 3D concrete printing technique, which incorporates 3D printing into the construction industry, does not use a formwork when placing concrete, and it requires less workload and labor, so economical construction is possible. However, 3D-printed concrete is expected to have a lower strength than that of molded concrete. In this study, the properties of 3D-printed concrete were analyzed. To fabricate the 3D-printed concrete samples, the extrusion path and shape of the samples were designed with Ultimaker Cura. Based on this, G-codes were generated to control the 3D printer. The optimal concrete mixing proportion was selected considering such factors as extrudability and buildability. Molded samples with the same dimensions were also fabricated for comparative analysis. The properties of each sample were measured through a three-point bending test and uniaxial compression test, and a comparative analysis was performed.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.