• 제목/요약/키워드: Forming process condition

검색결과 368건 처리시간 0.02초

유리섬유/폴리프로필렌 복합재료 (Twintex)를 이용한 고정판 성형조건에 관한 연구 (A study on the forming condition of a bone plate made of a glass/polypropylene composite (Twintex))

  • 박석원;유성환;이재응;장승환
    • Composites Research
    • /
    • 제23권6호
    • /
    • pp.55-60
    • /
    • 2010
  • 본 연구에서는 열가소성 복합재료인 유리섬유/폴리프로필렌 복합재료를 이용한 복합재료 고정판의 적절한 성형조건을 찾기 위해 다양한 성형조건으로 제작된 시편의 인장실험과 굽힘실험을 수행하여 성형조건에 따른 기계적 거동을 비교하였다. 실험 결과 성형온도와 압력이 각각 $230^{\circ}C$, 3MPa일 때 가장 우수한 기계적 특성을 가짐을 확인하였다. 성형실험을 통해 결정된 성형조건을 이용한 복합재료 고정판의 성형방법으로는 고정판의 스크류 구멍을 한번에 성형하는 정형성형방법과 스크류 구멍을 후가공하는 방법을 사용하였으며, 성형실험과 굽힘실험 결과 스크류 구멍을 후가공 하는 경우 우수한 굽힘특성을 가지는 것을 확인하였다. 본 논문에서는 복합재료 고정판의 적절한 성형을 위해 유리섬유/폴리프로필렌 복합재료의 기초 성형정보와 그에 따른 고정판 성형에 대한 연구를 수행하였으며, 이 결과는 해당재료를 이용한 구조물 성형에 중요한 정보를 제공할 것으로 기대된다.

AZ31 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구 (Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy)

  • 권기태;강석봉;강충길
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.586-593
    • /
    • 2008
  • In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. The deep drawing process with rectangular shape alone at the first stage and with both circular and rectangular shapes at the second stage was employed. At the first stage, through deep drawing process with rectangular shape alone according to various forming temperature($150{\sim}350^{\circ}C$) and velocity($0.1{\sim}1.0mm/s$), optimum forming condition was obtained. At the second stage, deep drawing process with the circular and rectangular shapes were performed following deep drawn square cups with Limited Drawing Height(LDH) obtained at the first stage. Here, clearance which is defined a gap between the die and the punch including sheet was set to ratio of 20, 40 and 100% to thickness in sheet. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

점진성형공구 코팅처리 및 소재에 따른 성형품 표면품질 분석 (Surface Quality of Products according to the Material and Coating Condition of the Forming Tool in Incremental Sheet Forming)

  • 윤형원;박남수
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.360-366
    • /
    • 2023
  • This study is concerned with the surface quality of products according to the material and coating condition of the forming tool in incremental sheet forming. Three forming tools, SKD11 with and without diamond-like-coating (DLC) and polymer tool tip, were used to form conical and pyramidal geometries to take into account the influence of friction between the forming tool and the sheet on the surface quality including geometric accuracy of deformed samples. Each test was performed using SUS304 with a thickness of 0.4 mm according to different incremental depths per lap of 0.5 mm, 1.0 mm, and 1.5 mm for the contour tool path, considering the increase in normal force which is associated with the frictional behavior during local deformation. The surface quality was then investigated through surface roughness measured with KEYENCE VR-6000 and relative strain distribution including deformed shape analyzed with ARGUS which is a non-contact optical strain measurement system. Differences between 3D CAD surfaces and captured geometry from experiments were evaluated to compare the effect of friction on geometric accuracy. From comparisons of experimental results, it was revealed that the polymer-based tool tip can improve surface quality and geometric accuracy by reducing the undesired material flow due to local friction in the increment sheet forming process.

일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측 (Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft)

  • 이호진;국대선;안동규;정종훈;설상석
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

연성파괴모델의 유한요소법을 이용한 하이드로포밍공정에의 성형한계 예측 (Prediction of Forming Limit in Hydroforming Processes by Using Finite Element Method and Ductile Fracture Criterion)

  • 김대환;뇌여평;강범수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.230-235
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit fer two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral I is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

반용융 단조 공정에 의한 자동차용 알루미늄 피스톤 제조에 관한 연구 (A Study on Manufacture of Aluminum Automotive Piston by Thixoforging)

  • 최정일;김재훈;박준홍;김영호;최재찬
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.136-144
    • /
    • 2006
  • Aluminum engine piston is manufactured by thixoforging according to forming variables. It is very important to find effects of forming variables on final products in thixoferging. In order to find the effects, however, many researchers and industrial technicians have depended upon too many types of experiments. In this study, the process parameters which have influences on thixofurging process of aluminum automotive engine piston are found by a statistical method and the correlation equations between the process parameters and quality of product are approximated through the surface response analysis. Forming variables such as initial solid fraction, die temperature, and compression holding time are considered fur manufacturing aluminum engine piston by thixofurging. Hardness and microstructure are inspected so that optimal forming condition is found by the statistical approach.

평면 변형 하에서의 비정상 이상 공정 이론 (Non-steady Ideal Forming in Plane Strain)

  • 정관수;이원오
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.66-69
    • /
    • 2002
  • In the ideal forming theory(1), which has been deviously developed as a direct method for optimizing forming process, material elements are required to deform following the minimum plastic work path (or the proportional true strain path). Besides the general theory(2,3), specific ideal forming theories have been developed for membrane sheet forming(4) as well as two-dimensional steady bulk forming(5-7). In this work, the ideal forming theory was successfully applied for non-steady bulk forming under the plane strain condition. Here, the shape change complying with the minimum plastic work path, was effectively described by developing a numerical code based on the characteristic method. Numerical results obtained for a specific industrial part also include the optimum pre-forming shape and its evolving shape change to the final shape as well as the boundary traction history.

  • PDF

반융용 알루미늄재료의 재가열조건이 구상화 조직에 미치는 영향 (Effect of Reheating Conditions of Semi-Solid Aluminum Alloy on Globular Microstructure)

  • 강성수;강충길;도영진
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.215-224
    • /
    • 1998
  • A semi-solid forming has a lot of advantages compared to the die casting. squeeze casting and conventional forging. therefore, semi-solid forming process is now becoming industrial interest for the production of metal components and metal matrix composites. However the material behaviour in the semi-solid temperature range is not sufficiently known although it controls the whole process through forces and geometry evolutions because the behaviour of metal slurries is complex. The semi-solid materials(SSMs) fabricated under electric-magnetic stirring condition is necessary to be applicated in forming process. A reheating conditions were studied with the reheating time holding time and reheating temperatures. The microstructure of SSM(specimen size : d39${\times}$h85) at the condition of heating time 10min and heating temperature 590${\circ}C$ is the most globular and finest one. The microstructure of SSM(specimen size : d76${\times}$h60) reheated under the three step reheating conditions is most globular and finest.

  • PDF

자동차용 대형 휠 디스크의 스피이닝 설계 (The Process Planning of Disc Spinning for a Large Wheel of Automobile)

  • 이항수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 금형가공 심포지엄
    • /
    • pp.28-42
    • /
    • 1998
  • Spinning is one of the incremental forming process by the rotating mandrel and forming roller, and has been applied to manufacturing the wheel disc of automobile to simplify the manufacturing process and to improve the mechanical properties of product. In the proesent study the process variables have been extracted and considered to decide the specification of the spinning machine. The maximum values of working load and power have been evaluated and the blank size has been disigned. The shape and dimensionof forming roller have been designed and the process condition such a s rotational velocity of mandrel and the feedrate of roller have been decided.

  • PDF

유한요소해석을 이용한 열간프레스성형 적용 로어 컨트롤 암의 성형품질 조건 최적화 (Optimization of Conditions of Forming Quality for Hot-press-formed Lower Control Arm Using Finite Element Analysis)

  • 손현성;최병근
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.45-50
    • /
    • 2011
  • Hot-Press-Forming (HPF), an advanced sheet metal forming method using stamping at a high temperature of about $900^{\circ}C$ and quenching in an internally cooled die set, is one of the most successful forming process in producing crash-resistant parts such as pillars and bumpers with complex shape, ultrahigh strength, and minimum springback. To optimize conditions of a forming quality in HPF process and secure a safe product without any failures, such as fractures and wrinkling, the simulations based on the coupled thermo-mechanical analysis for a hot-press-formed lower control arm are applied with Taguchi's orthogonal array experiment. Three factor variables - the friction coefficient, blank shape, and hole location for burring - are selected to be optimized. The most effective condition of a forming quality for a hot-press-formed lower control arm is suggested. The simulation results are confirmed with experimental ones.