• Title/Summary/Keyword: Forming die

Search Result 941, Processing Time 0.022 seconds

A Study on the optimal Process Planning and Die design for manufacturing Bolts by multi-former (다단-포머용 볼트류 제작을 위한 최적의 공정 및 금형설계에 관한 연구)

  • 박철우;김철;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1307-1311
    • /
    • 2004
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. They can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module an optimal design technique and horizontal split die were investigated for determining appropriate dimensions of components of multi-former die set. It is constructed that the proposed method can be beneficial for improving the tool life of die set at practice.

  • PDF

Development of The Multi Forming Type Progressive Die for Thin Sheet Metal

  • Sim, Sung-Bo;Jang, Chan-Ho;Sung, Yul-Min
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.196-201
    • /
    • 2001
  • This study reveals the thin sheet metal process with multi-forming die that the name is progressive die, as a pilotless type, also high precision production part is made. They require analysis of many kinds of important factors, i.e. theory and practice of metal press working and its phenomena die structure, machining condition for die making, die material, heat treatment of die components, know-how and so on. In this study, we designed and constructed a multi-forming progressive die as a bending and drawing working of multi-stage and performed through the try out for thin sheet metal. Out of the characteristics of this paper that nothing might be ever seen before such as this type of research method on the all of processes of thin and high precision production part.

  • PDF

Study on Drawing Analysis of an Automotive Front Door and Stamping Die Manufacturing Process (프런트 도어의 드로잉 공정해석과 프레스 금형 제작 공정에 관한 연구)

  • Park, Yong-Guk
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.586-593
    • /
    • 1998
  • In recent automotive industries there has been significant increase in applications of computer simulation to the manufacturing of stamping dies for inner and outer body panels which greatly affect durability and aesthetic quality of automobiles. Enhancement of die quality and reduction of total die manufacturing time and consequently manufacturing cost are the visible outcome. However to successfully apply the result of simulation by a commercial package to the die manufacturing development of an optimal die manufacturing process is required upon the completion of analysis of forte and shortcoming of available sheet metal forming softwares. Based on the results of numerical analysis of front door outer panel forming. this paper evaluates the applicability of simulation results to the real die manufacturing for automotive body panels. Also it attempts to select an optimal die manufacturing process including design machining and tryout. Lastly it discusses the expected effects by adopt-ing the selected process in a real stamping die manufacturing facility.

  • PDF

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

Prediction of the Formability Enhancement from Electromagnetic Forming due to Interaction between Tool and Blank Sheet (전자기 성형시 금형과 소재의 접촉에 따른 성형성 개선 예측)

  • Lee, Y.H.;Kim, H.K.;Noh, H.G.;An, W.J.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.199-204
    • /
    • 2015
  • Electromagnetic Forming is a high speed forming technology which uses electromagnetic (Lorentz’s) forces to shape sheet metal parts. In the current study the effect of the tool-sheet interaction during electromagnetic forming on formability enhancement is investigated using FEM. The decrease in void volume fraction by having the sheet contact with die helps to improve formability. The main purpose of the current study was to predict improvement of formed sheets whether the sheet contacts or does not contact the die under experimental conditions and 3-D finite element analysis. The results show that fractures caused by the voids in the forming sheet appear only in some specific cases and the bulge height of the conical shape was shorter than the height with a free bulge. For the same height conditions, however, the formability was improved for the conical-shaped die when there is sheet contact with the die.

The Development of Life Prediction Method for Hot Forming Dies (열간단조용 금형형의 수명예측기법 개발)

  • 이진호;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.54-59
    • /
    • 1998
  • In this study, two kinds of life prediction method for hot forming die are developed . One is empirical method requiring some experiment that evaluate thermal softening of die material accoring to operating conditions. The other is analyticl method that calcuate wear quantity of die occuring during the forming process. Wear is a predominant factor as well as plastic deformation and heat checking . And, these methods are applied to prodict tool life real die producting part for automobile. Thus , the applicability and the accuracy of the presented methods are investigated. Using the verified life prediction method above , optimal blocker die design minimizing the finisher die is done.

  • PDF

Numerical analysis on the material flow in stepped rod forming (단붙이 로드의 성형에서 소재유동에 관한 해석)

  • Go, Byung-Du;Gang, Dong-Myung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

Blow forming characteristics of AZ31 sheet (AZ31 판재의 부풀림 성형 특성)

  • Kwon, Yong-Nam;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.99-102
    • /
    • 2006
  • In the present study, the blow forming characteristics of AZ31 sheet was investigated to test the feasibility of the practical application of wrought Mg alloys. Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. Shallow cups for the small electronics cases have been stamped with warm die system. However, some technical issues will challenge Mg forming when large parts are considered with warm die system over $200^{\circ}C$. Most of all, thermal expansion of die system will deteriorate a die accuracy. On the other hand, blow forming does not have a problem with inaccuracy with die system. In this study, tensile tests were followed by blow forming at various temperature and pressure. AZ31 sheet showed a superplastic deformation behavior with extensive grain boundary sliding at the temperature above $300^{\circ}C$. However, the deformation behavior was likely to differ depending on stress condition.

  • PDF

Study on Springback Control in Reconfigurable Die Forming (가변금형 성형에서 탄성회복 제어 연구)

  • Ha, S.M.;Park, J.W.;Kim, T.W.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.393-400
    • /
    • 2008
  • Springback is one of the most difficult phenomena to analyze and control in sheet forming. Most of traditional springback control methods rely on experiences of skilled workers in industrial fields. This study focuses on prediction and generation of optimum reconfigurable die surfaces to control shape errors originated by springback. For this purpose, a deformation transfer function(DTF) was combined with finite element analysis of the springback in the 2D sheet forming model of elastic-perfectly plastic materials under the condition without blank holder. The results showed shape errors within 1% of the objective shape, which were comparable with analytically predicted errors. In addition to this theoretical analysis, DTF method was also applied to 2D and 3D sheet forming experiments. The experimental results showed ${\pm}0.5$ mm and ${\pm}1.0$ mm shape error distribution respectively, demonstrating that reconfigurable die surfaces were predicted well by the DTF method. Irrespective of material properties and sheet thickness, the DTF method was applicable not only to FEM simulation but also to 2D and 3D elasto-reconfigurable die forming. Consequently, this study shows that springback can be controlled effectively in the elasto-RDF system by using the DTF method.

Optimal design of multi-former die set by the techniques of horizontal split

  • Kim Chul;Park Chul-Woo;Chang Young-June
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.3-8
    • /
    • 2006
  • This paper deals with an automated computer-aided process planning and die design system by which designer can determine operation sequences even if they have a little experience in process planning and die design for axisymmetric products. An attempt is made to link programs incorporating a number of expert design rules with the process variables obtained by commercial FEM softwares, DEFORM and ANSYS, to form a useful package. The system can provide a flexible process based on either the reduction in the number of forming sequences by combining the possible two processes in sequence, or the reduction of deviation of the distribution on the level of the required forming loads by controlling the forming ratios. Especially in die design module optimal design technique and horizontal split of die insert were investigated for determining appropriate dimensions of components of multi-former die set. Results obtained, using the modules, enable the design and manufacture of a die set for a multi-former to be more efficiently performed.