• Title/Summary/Keyword: Forming Severity

Search Result 22, Processing Time 0.019 seconds

A method of calculating strain state and forming severity analysis for axisymmetric sheet formed parts. (축대칭 프레스가공 제품의 변형률 예측기술과 변형여유 해석에의 적용)

  • 박기철;남재복;최원섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.173-184
    • /
    • 1994
  • A method of obtaining deformation severity of axisymmetric shape deep-drawn products was developed. Strain states of products produced by single or multi-stage drawing were predicted by using finite element analysis. This method used minimization of potential energy between the known shape of final product and the unknown in initial blank. And that was done numerically by nonlinear finite element method. Deformation theory of plasticity was used for practical purposes. From predicted strain states of drawn parts, deformation severity was found by using forming limit diagrams.

Press forming severity analysis and selection of optimum sheet steel properties for customer lines by using 3-D simulation program. (삼차원 프레스가공 시뮬레이션 기술을 활용한 수요가 가공공정 분석과 최적 재질선정)

  • 박기철;한수식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.111-131
    • /
    • 1996
  • In order to analyze stamping processes and to select optimum material properties of sheet steels for customer lines, 3-dimensional finite element analysis software were used. Commercial explicit finite element code, PAM-STAMP, was able to simulate 3-dimensional press formed parts with good accuracy and gave some useful results by orthogonal array experiments. Deformation of draw-bead were predicted by ABAQUS accurately, so that material selection for those parts by simulation were possible.

Study on the forming Limit Diagram of Steel Sheets for the Oil Pan of Automobile at the Warm Forming Condition (오일팬용 재료의 온간 성형한계도에 관한 연구)

  • 이항수;오영근;최치수
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.670-680
    • /
    • 2000
  • The purpose of this study is to provide the database of forming limit diagram applicable to the warm forming of oil pan. The test materials are SCP1 and SCP3C with the thickness of 1.4mm which is used for the oil pan of automobile. The testing temperature is 5$^{\circ}C$~15$0^{\circ}C$ which is In the range of practical usage. The results are the forming limit diagram limiting dome height and the maximum punch load at each temperature such as 5$^{\circ}C$, $25^{\circ}C$, 6$0^{\circ}C$, 9$0^{\circ}C$, 12$0^{\circ}C$ and 15$0^{\circ}C$. From these results, we can see that the forming limit curves are translated depending upon the temperature and that FLC at low temperature is higher than at high temperature. Both of limiting dome height and maximum punch load also decrease as the temperature increases. Present results can be useful for die trial and forming analysis as a tool of evaluating the forming severity for the sheet metal forming processes at the warm working condition by comparing the practical strains with FLC.

  • PDF

Forming Limit Prediction in Tube Hydroforming Processes by Using the FEM and FLSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.527-532
    • /
    • 2005
  • Among the failure modes which can occur in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram (FLD) has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, The application of FLD to hydroforming process, where strain path is no longer linear throughout forming process, may lead to misunderstanding for fracture initiation. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out the state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified by a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the forming severity in hydroforming processes.

Studies on the forming limits for optimization of the tool path in Dieless incremental sheet metal forming (무금형 점진 판재 성형에서 공구경로 최적화를 위한 성형한계에 관한 연구)

  • Lee S. J.;Kim M. C.;Lee Y. S.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.249-252
    • /
    • 2005
  • Recently, as the industrial demand for small quantity batch production of sheet metal components, the application of dieless forming technology to production of these component rise with the advantages of the reduction in manufacturing cost and time. In dieless forming processes, the determination of moving path of tool plays an important role in producing successfully formed parts. In order to obtain the optimized moving path of tool avoiding forming failure, it is necessary to examine the forming limit of sheet material. Therefore, in this study, as the new criterion to evaluate the formability of sheet material in dieless forming processes FDD(feeding depth diagram) with respect to feeding depth and punch diameter is proposed. Thus, the FDD for the sheet materials of STS304 and Ti-grade2 were obtained from a series of FDT(feeding depth test). In addition the possibility of the application of FLD in judging forming severity in dieless forming processes was investigated by comparing the results of FE analyses based on FLD and experimental FDT.

  • PDF

Forming Limit Prediction in Tube Hydroforming Processes by using the FEM and ELSD (유한요소법과 FLSD를 이용한 관재 하이드로포밍 공정에서의 성형 한계 예측)

  • Kim S. W.;Kim J.;Lee J. H.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.92-96
    • /
    • 2005
  • Among the failure modes which can be occurred in tube hydroforming such as wrinkling, bursting or buckling, the bursting by local instability under excessive tensile stresses is irrecoverable phenomenon. Thus, the accurate prediction of bursting condition plays an important role in producing the successfully hydroformed part without any defects. As the classical forming limit criteria, strain-based forming limit diagram has widely used to predict the failure in sheet metal forming. However, it is known that the FLD is extremely dependant on strain path throughout the forming process. Furthermore, the path-dependent limitation of FLD makes the application to hydroforming process, where strain path is no longer linear throughout forming process, more careful. In this work, stress-based forming limit diagram (FLSD), which is strain path-independent and more general, was applied to prediction of forming limit in tube hydroforming. Combined with the analytical FLSD determined from plastic instability theory, finite element analyses were carried out to find out Ihe state of stresses during hydroforming operation, and then FLSD is utilized as forming limit criterion. In addition, the approach is verified with a series of bulge tests in view of bursting pressure and shows a good agreement. Consequently, it is shown that the approach proposed in this paper will provide a feasible method to satisfy the increasing practical demands for judging the farming severity in hydroforming processes.

  • PDF

Sectional Forming Analysis of Automobile Sheet Metal Parts by using Rigid-Plastic Explicit Finite Element Method (강소성 외연적 유한요소법을 이용한 자동차 박판제품의 성형공정에 대한 단면해석)

  • Ahn, D.G.;Jung, D.W.;Yang, D.Y.;Lee, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.19-28
    • /
    • 1995
  • The explicit scheme for finite element analysis of sheet metal forming problems has been widely used for providing practical solutions since it improves the convergency problem, memory size and computational time especially for the case of complicated geometry and large element number. The explicit schemes in general use are based on the elastic-plastic modelling of material requiring large computation time. In the present work, rigid-plastic explicit finite element method is introduced for analysis of sheet metal forming processes in which plane strain normal anisotropy condition can be assumed by dividing the whole piece into sections. The explicit scheme is in good agreement with the implicit scheme for numerical analysis and experimental results of auto-body panels. The proposed rigid-plastic explicit finite element method can be used as robust and efficient computational method for prediction of defects and forming severity.

  • PDF

Sectional analysis of stamping processes using Equilibrium approach (평형해법에 의한 스탬핑 공정의 단면 해석)

  • Yoon, J.W.;Yoo, D.J.;Song, I.S.;Yang, D.Y.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.58-68
    • /
    • 1994
  • An equilibrium approach is suggested as an effective tool for the analysis of sheet metal forming processes on the basis of force balance together with geometric relations and plasticity theroy. In computing a force balance equation, it is required to define a geometric curve approximating the shape of the sheet metal at any step of deformation from the geometric interaction between the die and the deforming sheet. Then the geometic informations for contacting and non-contacting sections of the sheet metal such as the number and length of both non-contact region, contact angle, and die radius of contact section are known from the geometric forming curve and utilized for optimization by force balance equation. In computation, the sheet material is assumed to be of normal amisotropy and rigid-phastic workhardening. It has been shown that there are good agreements between the equilibrium approach and FEM computation for the benchmark test example and auto-body panels whose sections can be assumed in plane-strain state. The proposed equilibrium approach can thus be used as a robust computational method in estimating the forming defects and forming severity rather quickly in the die design stage.

  • PDF

Investigation of Galling In Forming Galvanized Steel Sheet

  • Altan, Taylan;Kardes, Nimet;Kim, Hyunok
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • The major purpose of the present study is to evaluate the performance of various galvanized (GI) or galvannealed (GA) mild steels and AHSS in stamping applications. Finite Element Analysis (FEA) of selected stamping operations was conducted to estimate the critical pressure boundary conditions that exist in practice. Using this information, laboratory tribotests, e.g. Twist Compression (TCT), Deep Drawing (DDT) and Strip Drawing (SDT) Tests, were developed to evaluate the performance of selected lubricants and die materials/coatings in forming galvanized steels of interest. The sheet materials investigated included mild steels and AHSS (e.g. DP600 GI/GA, DP780 GI/GA, TRIP780 GA and DP980 GI/GA). Experimental results showed that galvanized material resulted in more galling, while galvannealed material showed more powdering and flaking. The surface roughness and chemical composition of galvanized sheet materials affected the severity of galling under the same testing conditions, i.e. lubricants and die materials/coatings. The results of this study helped to determine the critical interface pressure that initiates lubricant failure and galling in stamping selected galvanized sheet materials. Thus, to prevent or postpone the critical interface conditions, the results of this study can be used to select the optimum combination of galvanized sheet, die material, die coating and lubricant for forming structural automotive components.

Fractal evaluation of the level of alligator cracking in pavements

  • Vallejo, Luis E.
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.219-227
    • /
    • 2012
  • Pavement management systems require systematic monitoring of pavement surfaces to determine preventive and corrective maintenance. The process involves the accumulation of large amounts of visual data, typically obtained from site visitation. The pavement surface condition is then correlated to a pavement distress index that is based on a scoring system previously established by state or federal agencies. The scoring system determines if the pavement section requires maintenance, overlay or reconstruction. One of the surface distresses forming part of the overall pavement distress index is the Alligator Crack Index (AC Index). The AC Index involves the visual evaluation of the crack severity of a section of a pavement as being low, medium, or high. This evaluation is then integrated into a formula in order to obtain the AC Index. In this study a quantification of the visual evaluation of the severity of alligator cracking is carried out using photographs and the fractal dimension concept from fractal theory. Pavements with low levels of cracking were found to have a fractal dimension equal to 1.051. Pavements with moderate levels of cracking had a fractal dimension equal to 1.1754. Pavements with high degrees of cracking had a fractal dimension that varied between 1.5037 (high) and 1.7111 (very high). Pavements with a level of cracking equal to 1.8976 represented pavements that disintegrated and developed potholes. Thus, the visual evaluation of the state of cracking of a pavement (the AC Index) could be enhanced with the use of the fractal dimension concept from fractal theory.