• Title/Summary/Keyword: Forming Sequence Design

Search Result 58, Processing Time 0.026 seconds

Preform Design of the Bevel Gear for the Warm Forging using Artificial Neural Network (신경망을 이용한 정밀 베벨기어의 온간단조 예비성형체 설계)

  • 김동환;김병민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.36-43
    • /
    • 2003
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. So, the design parameters related preform shape such as aspect ratio and chamfer length having an influence the formability of forged product are analyzed. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing preform shape in metal forming process.

The Optimal Preform Design for Automotive Differential Bevel Gear (자동차용 차동 베벨기어의 최적 예비성형체 설계)

  • 김병민;김동환;정구섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, the warm forging process sequence has been determined to manufacture the warm forged product for the precision bevel gear used as the differential gear unit of a commercial automobile. The preform shape of bevel gear influences the dimensional accuracy and stiffness of final product. The aspect ratio and chamfer length are considered as design parameters to achieve adequate metal distribution in the finish forging operation. Then the optimal conditions of design parameters have been selected by artificial neural network (ANN). Finally, to verify the optimal preform shape, the experiments of the warm forging of the bevel gear have been executed. The proposed method can give more systematic and economically feasible means for designing the preform shape in metal forming process.

The Application of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  • Choe, Yeong;Lee, Gyu-Ho;Go, Dae-Cheol;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.562-569
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage then an intermediate stage has to b added the process sequence to avoid failure during the drawing operation and the optimal process design considering for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. From the results of finrte element analysis the optimal value of drawing ratio is obtained which contributes to the more uniform distribution of thickess and the smaller values of the ductile fracture infinal cup.

  • PDF

A Study on the Process Sequence Design in Metal Forming including Deep Drawing (디프드로잉이 포함된 소성가공의 공정설계에 관한 연구)

  • 황병복;임중연;이호용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.107-117
    • /
    • 1994
  • A design methodology is applied for manufacturing a disk-brake piston component and a washing machine container. The design criteria are the limit drawing ratio and the forging load within the available press limit. Also, the final product should not have any geometrical defect. The rigid-plastic and elastic-plastic FEM have been applied to simulate both of the conventional manufacturing processes, respectively, which include deep drawing and forging process. Simulations of one stage process from a selected stock to the final product shape are performed for generating information on additional requirements for metal flow. The best manufacturing processes are selected, which is using a hemispherical punch in the deep drawing process for both disk-brake piston component and washing machine container.

  • PDF

A Comparisonal Anlaysis among the Processes of Gear Blank (기어 블랭크 성형공정의 비교 해석)

  • 최호준;김장군;황병복
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.10a
    • /
    • pp.174-184
    • /
    • 1996
  • Two methods for cold extrusion processes to produce an axisymmetric steel gear blank are investigated for comparing each other. The "classical" forming method consisting of four operations is selected first to be simulated using the rigid-plastic finite element method and uses single-die presses. The other using a fully automated transfer headers can produce the final part without interannealing. The final products must be checked at the design criteria such as area reduction, the extrusion ratio and punch diameter to depth ratio, especially punch buckling by simulations. FEM analysis is performed mainly for strain distribution, both process sequences are proved to have proper charicteristics suitable for each production method in terms of maximum load. Those simulation results will provide good design criteria in the future work to advance the manufacturing process.

  • PDF

The Effect of Preform Shape for Hot-forging Process of Aluminum-alloy (예비성형체형상이 알루미늄합금의 열간단조공정에 미치는 영향)

  • Kwon, Y.M.;Lee, Y.S.;Song, J.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.106-110
    • /
    • 2001
  • A effective and accurate method of hot-forging process is essential to the design of optimized dies as well as workpiece of intial shape. the former is achieved by a proper forging sequence with invokes serious problem like excessive load and die wear, die failure, underfilling and lap defects. the latter is achieved by a proper preform design of case I, case II, case III. metal forming processes of aluminum-alloy forged at an effective strain and temperature are analyzed by the finite element method. the non-isothermal analysis have been compared with optimized in terms of preform shape.

  • PDF

Process Design of Multi-Step Drawing using Artificial Neural Network (신경망을 이용한 다단 인발의 공정설계)

  • 김동환;김동진;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.144-147
    • /
    • 1997
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network), has been considered. The investigated problem involves the adequate selection of the drawing die angle and the correspondent reduction rate sequence in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite element simulation are selected by using orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study, it is shown that the new technique using ANN is useful method in application to the wide range of metal forming process.

  • PDF

A Case Study of Display Design of Space 'O'sulloc Teahouse' from the Point of Sequence Narrative (시퀀스 내러티브 관점에 따른 '오설록 티하우스' 공간의 제품 전시 디자인 사례 연구)

  • Yang, Hyeon-Jeong;Lee, Hyunsoo
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2014
  • Recently, there have been increasing attempts to pursue and express feelings such as sensibilities, emotions, and impressiveness in commercial spaces. One of such methods is to apply 'storytelling' to space designs. Applicability of storytelling to a space suggests that the contents of a space can be expressed through various mediums. Portraying events and situations through a single time continuity of a story is referred to as 'narrative'. The movement of users and sequence of contents are determined by a narrative. It provides different storytelling and a sense of place to each space through various roles, such as wide association, engraving, and image formation. A narrative can lead users to engage in different perceptions and behaviors even in spaces with the same content. Thus, this study is intended to examine the impact of space marketing in line with design narratives, assuming that narratives of commercial space designs will influence the formation of brand identity. The research methods are as follows. First, the definition of narratives in space design was established by examining narrative architectures. Second, design analysis tools for commercial spaces were established from the perspective of narratives through preceding studies. Third, the design narratives of different shops under the same brand were comparatively analyzed through a case study. To carry out a case study, a commercial space of 'O'sulloc' was selected, and its brand identity was studied from the narrative standpoint. The case study involved interior designs of 7 road shops of 'O'sulloc.' Among the 7 road shops, two of them with the biggest difference in design narratives were selected, and an observation survey was done on the users as a second analysis. Through the observation survey, actual design narrative experience was analyzed in 4 steps of introduction, development, turn, and conclusion. The findings are as follows. The design method of each shop varied, and different design elements were emphasized. Among various elements, the ones that reflect the brand identity of 'O'sulloc' the best were logo, product, and shape. During the process of narratives, the characteristics of each shop and user recognition and behavior varied depending on the degree of emphasis on a particular element. It suggests that space design narratives can influence the formation of brand identity. This study provides ideal directions of developing space designs necessary for forming brand identity from the standpoint of Korean traditional culture modernization. Future studies could discuss the economic feasibility of such designs.

FE Analysis of the Forming Process of an Axle-Housing (Axle-Housing 성형공정의 유한요소해석)

  • Park, Chul;Choi, Ho-Joon;Hwang, Beong-Bok
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.48-56
    • /
    • 1995
  • A manufacturing process for the axle-housing is analyzed by the rigid-plastic finite element method. The process contains five stages for the final product. During the simulation, remeshings are done four times due to severe mesh distributions. FE Analysis is performed mainly for strain distributions and load-stroke relationships. Those results are to be an useful design criteria for designing a new process sequence in future.

  • PDF

Feasibility Study on Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Analysis (강-서성 유한요소 해석에서의 3차원 역추적 기법에 관한 연구)

  • 이진희;강범수;김병민
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.267-281
    • /
    • 1995
  • Preform design is one of the critical fields in metal forming. The finite element method(FEM) has been effective in designing preforms and process sequence, for which the backward tracing scheme of the rigid-plastic FEM has been explored. In this work a program using the backward tracing scheme by the rigid-plastic FEM is developed for three-dimensional plastic deformation, which is an extension of the scheme from two-dimensional cases. The calculation of friction between workpiece and die, and handling of boundary conditions during backward tracing require sophisticated treatment. The developed program is applied to upsetting of a rectangular block and to side pressing of a cylindrical workpiece. The results of the two applications show feasibility of the program on three-dimensional plastic deformation.

  • PDF