• Title/Summary/Keyword: Forming Process

Search Result 3,273, Processing Time 0.031 seconds

Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process (마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구)

  • Park, E.T.;Kim, T.J.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.

Numerical Study on Flexible Forming Process for Sheet Metal (박판용 가변성형공정의 수치적 연구)

  • Heo, S.C.;Seo, Y.H.;Park, J.W.;Ku, T.W.;Song, W.J.;Kim, J.;Kang, B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.281-284
    • /
    • 2009
  • Flexible forming process for sheet metal using reconfigurable die is introduced based on numerical simulation. Numerical simulation of sheet metal forming process is carried out by using flexible dies model instead of conventional matched die set. Elastic cushion which has high resilience behavior from excessive deformation are inserted between forming punches and blank material for smoothing the forming surface which has discrete due to characteristics of the flexile die. As an elastic cushion, urethane pads are utilized using hyperelastic material model in the simulation. Formability in view of surface defect such as onset of dimple is compared with regard to various punch sizes. Consequently, it is confirmed that the flexible forming process for sheet material has appropriate capability and feasibility for manufacturing of smoothly curved surface instead of conventional die forming process.

  • PDF

FEM analysis for process variables in sheet metal forming for Mg alloy (유한요소해석을 이용한 Mg 합금 판재 성형 공정 변수 분석)

  • 이영선;권용남;이정환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1082-1086
    • /
    • 2004
  • Since the sheet forming of Mg alloy has many difficulties due to the low formability, many forming conditions need to be selected properly. Especially, the process variables should be investigated to increase the formability, such as, forming temperature. In this paper, the effects of forming process variables has been investigated using the bending and deep drawing process. A simple U-bending designed for mobile part could be formed in room temperature and springback amounts are surveyed. On the other hand, square cup part couldn't be formed in room temperature due to the low formability. Therefore, the effects of forming temperature are investigated in deep drawing process for square cup part. As a experimental and FEM results, the optimum forming temperature is presence and formability in a higher temperature is less than that of lower temperature. Above experimental results are compared with the FEM analysis and well coincided with the experimental results. Therefore, more detail investigations could be progressed to select more appropriate process conditions by the FEA.

  • PDF

Development of a Roll-Forming Process of Linearly Variable Symmetric Hat-type Cross-section (좌우 대칭 모자형 단면이 길이 방향으로 선형적으로 변하는 롤 포밍 공정의 개발)

  • Kim, Kwang-Heui;Yoon, Moon-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.118-125
    • /
    • 2015
  • The roll-forming process is a highly productive incremental forming process and is suitable for manufacturing thin, high-strength steel products. Recently, this process has been considered one of the most productive processes in manufacturing high-strength steel automotive structural parts. However, it is very difficult to develop the roll-forming process when the cross-sectional shape of the product changes in the longitudinal direction. In this study, a roll-forming process for manufacturing high-strength steel automotive parts with a linearly variable symmetric hat-type cross-section was developed. The forming rolls were designed by the 3D CAD system, CATIA. Additionally, the designed forming rolls were modified by the simulation through the 3D elastic-plastic finite element analysis software, MARC. The results of the finite element analysis show that the final roll-forming roll can successfully produce the desired high-strength steel automotive part with a variable cross-section.

Characteristic analysis of low frequency vibration forming (저주파 가진 성형의 특성 분석)

  • Park, C.J.;Choi, J.P.;Park, D.Y.;Hong, N.P.;Lee, H.J.;Lee, N.K.;Kim, S.O.;Chu, Andy;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.254-258
    • /
    • 2009
  • In this paper, the low frequency vibration forming system is developed for micro-patterns formation on the metal substrate. many researchers have studied about micro-forming technologies such as micro deep drawing, press forming, forging, extrusion etc. for the formation of precise micro-patterns on the surface of metal substrates, multi-step forming process must be used to improve qualifies of the deformed patterns. Since the low frequency vibration forming system could easily deform the surface of metal substrates, several steps of multi-step forming process should be removed by using the low frequency vibration forming system. In order to find optimal process conditions, we have carried out low frequency vibration forming process with varying the vibration frequency from 110Hz to 500Hz.

  • PDF

Hydro-forming Process Control and Design Concept of Automotive Rear Sub-frame Components Through Cross Sectional Analysis (단면 분석을 통한 자동차용 리어 서브-프레임 하이드로포밍 부품의 공정 제어 및 설계)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.1-6
    • /
    • 2018
  • Hydro-forming technology has spread dramatically throughout automotive industry over the last 20 years. This technology has many advantages for automotive applications in terms of better structural integrity of the parts, lower cost from fewer parts, material savings, weight reduction, lower springback, improved strength, durability, and design flexibility. In this study, various simulation technologies were developed to investigate the formability of hydro-forming components. Through this technology, to establish the effective forming process for appropriate components design, the bending process, pre-forming process, die closing process, etc. were considered for good forming. This paper proposes the forming amount, section length (corresponding to the hydro-forming press capacity), and minimum curvature (curvature effect evaluation according to the hydro-forming pressure) among the considerations in the design of the hydro-forming part. In addition, a design method is proposed for hydro-forming molding by carrying out cross section analysis of a real sub-frame part for automobiles. The effects of pre-bending, axial feed, hydraulic pressure, press load, and friction among the hydro-forming process parameters were analyzed. Therefore, whether these processes are necessary factors for hydro-forming were examined.

Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming (점진성형에서 형상 정밀도에 영향을 미치는 공정 변수)

  • Kang, Jae-Gwan;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

On the analysis of micro pattern forming on the thin sheet metal (마이크로 박판 미세 패턴 성형공정에 대한 해석적 연구)

  • Cha, S.H.;Shin, M.S.;Kim, J.H.;Kim, J.B.;Lee, H.J.;Song, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.53-56
    • /
    • 2009
  • Roll forming process is one of important metal processing technology because the process is simple and economical. These days, roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate for productivity. However, it is difficult to apply to the forming of micro scale or sub-micro scale pattern. In this study, the roll forming processing for the micro scale is designed and analyzed. In this study, the forming of micro pattern for solar cell plate by incremental roll forming process is analyzed. The solar cell plate may have thousands of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll forming process. Also experiment is carried out process that is designed through simulation.

  • PDF

Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process (머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발)

  • Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.

A Study on Development of Automotive Panel of Bumper Reinforcement with High Strength Steel Using Roll Forming Process (롤포밍 공정을 이용한 고장력강 재질의 범퍼보강 차체판넬 개발에 관한 연구)

  • Jung, Dong-Won;Kim, Dong-Hong;Kim, Bong-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.840-844
    • /
    • 2012
  • Roll forming process is a sheet metal forming process where the forming occurs with rolls in several steps, often from an undeformed sheet to a product ready to use. And each pair of forming rolls installed in a forming machine operates a particular role in making up the required final cross-section. This process used to many industry manufactures and recently apply to automotive industry. This study, FEM simulation applied bumper reinforcement using SHAPE-RF software and analyzed about total effective strain, longitudinal strain, thickness according to the roll-pass.