• Title/Summary/Keyword: Forming Pressure

Search Result 668, Processing Time 0.039 seconds

A Study on Derivation of Contact Heat Transfer Coefficient Between Die and Aluminum Billet in High Temperature Compression Process (고온 압축 공정에서 금형과 알루미늄 빌렛의 접촉 열전달 계수 도출에 관한 연구)

  • Jeon, H.W.;Suh, C.H.;Oh, S.G.;Kwon, T.H.;Kang, G.P.;Yook, H.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2021
  • In hot forging analysis, the interfacial heat transfer coefficient (IHTC) is a very important factor defining the heat flow between the die and the material. In particular, in the hot forging analysis of aluminum 6xxx series alloy, which are used in automobile parts, differences in load and microstructure occur due to changes in surface temperature according to the IHTC. This IHTC is not a constant value but changes depends on pressure. This study derived the IHTC under low load using aluminum 6082 alloy. An experiment was performed by fabricating a compression die, and a heat transfer analysis was performed based on the experimental data. The heat transfer analysis used DEFORM-2D, a commercial finite element analysis program. To derive the IHTC, heat transfer analysis was performed for the IHTC in the range of 10 to 50 kW/m2℃ at intervals of 10kW/m2℃. The heat transfer analysis results according to the IHTC and the actual experimental values were compared to derive the IHTC of the aluminum 6082 alloy under low load.

Fabrication of surface-enhanced Raman scattering substrate using black silicon layer manufactured through reactive ion etching (RIE 공정으로 제조된 블랙 실리콘(Black Silicon) 층을 사용한 표면 증강 라만 산란 기판 제작)

  • Kim, Hyeong Ju;Kim, Bonghwan;Lee, Dongin;Lee, Bong-Hee;Cho, Chanseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.267-272
    • /
    • 2021
  • In this study, Ag was deposited to investigate its applicability as a surface-enhanced Raman scattering substrate after forming a grass-type black silicon structure through maskless reactive ion etching. Grass-structured black silicon with heights of 2 - 7 ㎛ was formed at radio-frequency (RF) power of 150 - 170 W. The process pressure was 250 mTorr, the O2/SF6 gas ratio was 15/37.5, and the processing time was 10 - 20 min. When the processing time was increased by more than 20 min, the self-masking of SixOyFz did not occur, and the black silicon structure was therefore not formed. Raman response characteristics were measured based on the Ag thickness deposited on a black silicon substrate. As the Ag thickness increased, the characteristic peak intensity increased. When the Ag thickness deposited on the black silicon substrate increased from 40 to 80 nm, the Raman response intensity at a Raman wavelength of 1507 / cm increased from 8.2 × 103 to 25 × 103 cps. When the Ag thickness was 150 nm, the increase declined to 30 × 103 cps and showed a saturation tendency. When the RF power increased from 150 to 170 W, the response intensity at a 1507/cm Raman wavelength slightly increased from 30 × 103 to 33 × 103 cps. However, when the RF power was 200 W, the Raman response intensity decreased significantly to 6.2 × 103 cps.

Extremophiles as a Source of Unique Enzymes for Biotechnological Applications

  • Antranikian G.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.39-45
    • /
    • 2001
  • Extremophiles are unique microorganisms that are adapted to survive in ecological niches such as high or low temperatures, extremes of pH, high salt concentrations and high pressure. These unusual microorganisms have unique biochemical features which can be exploited for use in the biotechnological industries. Due to the high biodiversity of extremophilic archaea and bacteria and their existence in various biotopes a variety of biocatalysts with different physicochemical properties have been discovered. The extreme molecular stability of their enzymes, membranes and the synthesis of unique organic compounds and polymers make extremophiles interesting candidates for basic and applied research. Some of the enzymes from extremophiles, especially hyperthermophilic marine microorganisms (growth above $85^{\circ}C$), have already been purified in our laboratory. These include the enzyme systems from Pyrococcus, Pyrodictium, Thermococcus and Thermotoga sp. that are involved in polysacharide modification and protein bioconversion. Only recently, the genome of the thermoalkaliphilic strain. Anaerobranca gottschalkii has been completely sequenced providing a unique resource of novel biocatalysts that are active at high temperature and pH. The gene encoding the branching enzyme from this organism was cloned and expressed in a mesophilic host and finally characterized. A novel glucoamylase was purified from an aerobic archaeon which shows optimal activity at $90^{\circ}C$ and pH 2.0. This thermoacidophilic archaeon Picrophilus oshimae grows optimally at pH 0.7 and $60^{\circ}C$. Furthermore, we were able to detect thermoactive proteases from two anaerobic isolates which are able to hydrolyze feather keratin completely at $80^{\circ}C$ forming amino acids and peptides. In addition, new marine psychrophilic isolates will be presented that are able to secrete enzymes such as lipases, proteases and amylases possessing high activity below the freezing point of water.

  • PDF

Development of Al-SiC Metal Matrix Composites by using Hot Press Forming Technologies (열간가압성형기술을 이용한 Ai-SiC 금속기 복합재료 개발)

  • Jeon, Ho-Jin;Kim, Tae-Won
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.9-17
    • /
    • 2007
  • Powder metallurgy has been employed for the development of SiC particle reinforced aluminum metal matrix composites by means of hot isotropic pressing and vacuum hot pressing. A material model based on micro-mechanical approach then has been presented for the processes. Densification occurs by the inelastic flow of matrix materials during the consolidation, and consequently it depends on many process conditions such as applied pressure, temperature and volume fraction of reinforcement. The model is implemented into finite element software so that the process simulation can be performed enabling the predicted relative density to be compared with experimental data. In order to determine the performance of finished products, further tensile test has been conducted using the developed specimens. The effect of internal void of the materials on mechanical properties therefore can be investigated.

Development of Uniform Ag Electrode and Heating Sensors Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 Ag 전극 균일성 및 발열 센서 연구)

  • Gun Woong Kim;Jaebum Jeong;Jin Ho Park;Woo Jin Jeong;Jun Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2024
  • Inkjet printing technology is used to mass-produce displays and electrochemical sensors by dropping tens of pico-liters or less of specific-purpose ink through nozzles, just as ink is sprayed and printed on paper. Unlike the deposition method for vaporizing material in a vacuum, inkjet printing technology can be used for processing even under general atmospheric pressure and has a cost advantage because the material is dissolved in a solvent and used in the form of ink. In addition, because it can only be printed on the desired part, masks are not required. However, a technical shortcoming is the difficulty for commercialization, such as uniformity for forming the thickness and coffee ring effect. As sizes of devices decrease, the need to print electrodes with precision, thinness, and uniformity increases. In this study, we improved the printing and processing conditions to form a homogeneous electrode using Ag ink (DGP-45LT-15C) and applied this for patterning to fabricate a heat sensor. Upon the application of voltage to the heat sensor, the model with an extended width exhibited superior heat performance. However, in terms of sheet resistance, the model yielded an equivalent value of 21.6 Ω/□ compared to the ITO.

Design of shearing process to reduce die roll in the curved shape part of fine blanking process (파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계)

  • Yong-Jun Jeon
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder (폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구)

  • Park, Ji-Sun;Lee, Sea-Hyun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.103-111
    • /
    • 2012
  • One of the basic physical properties of the hardened cement paste, the rigidity, is deteriorated during concrete matrix forming, depending on the replacement rate of the crushed stone powder, and due to drying shrinkage. Therefore, the concrete containing crushed stone powder has been limitedly used as non-structural construction material. To improve these disadvantages, a hydrothermal reaction employing method can be considered. High-temperature and high-pressure water is involved in the hydrothermal reaction in the mixing with specific materials. The rigidity improving mechanism is related to the synthesis of calcium silicate. The calcium silicate is produced through reaction between calcium compounds and the silicic acid. Various kinds of calcium silicate can be produced depending on the CaO/$SiO_2$ mole ratio, the temperature of the hydrothermal synthesis, the pressure, and the reaction time. The product of the synthesis mechanism, tobermorite crystal, plays a pivotal role for the rigidity reinforcement. The crushed stone powder, analyzed in this study, contains 50 to 60% of $SiO_2$ and 10 to 20% $Al_2O_3$. The composite rate is appropriate to create the tobermorite crystal through formation of hardened cement matrix under the hydrothermal synthetic conditions and with the CaO in the cement. Moreover, further reinforcement was promoted using the property of material under the identical density through promoting the formation of tobermorite crystal.

  • PDF

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector (집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구)

  • Seoung, Dong-Hoon;Lee, Yong-Moon;Lee, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

CFD Analysis on the Hydro Turbine by the Existence of Blade Holes (블레이드 타공에 따른 수차의 유동해석)

  • Park, Yoo-Sin;Kim, Ki-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.675-680
    • /
    • 2017
  • Considering that most sewage treatment facilities have a water head of less than 2.0 m and a constant flow rate, the development of a small hydro power generation device capable of maintaining stable power generation and efficiency is urgently needed. In this study, a numerical analysis using the CFD code was carried out to develop a drag force type vertical axis hydro turbine for the improvement of the production efficiency of small-scale hydro energy underlow flow velocity conditions. The blade pressure changes and internal flows were analyzed in the presence or absence of hydro turbine blade holes at a flow velocity of less than 2.0 m/s. The pressure distribution of the hydro turbine blades with holes was found to be about 5.1 % lower than that of the hydro turbine blades without holes. The analysis of the internal flow around the water tank and hydro turbine blade revealed that the flow velocity varied with the vector distribution and that the flow velocity of the hydro turbine blades with holes was 5.6 % less than that of the hydro turbine blades without holes. It is believed that forming a hole in the blade may be helpful for its structural safety.

Behavior Interpretation of Discontinuity for Conservation Treatment of Standing Sculptured Buddha at the Yongamsa Temple, Korea (옥천 용암사 마애불의 보존관리를 위한 불연속면의 거동특성 해석)

  • Lee, Chan-Hee;Jeong, Yeon-Sam;Kim, Ji-Young;Yi, Jeong-Eun;Kim, Sun-Duk
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.81-91
    • /
    • 2004
  • The host rock of standing sculptured Buddha in the Yongamsa temple was macular biotite granite, which has gone through mechanical and chemical weathering. The principal rock-forming minerals are quartz, plagioclase, alkali feldspar, and biotite, the last two of which have been transformed into clay minerals and chlorite due to weathering processes. The bed rock around the Buddha statue is busily scattered with steep inclinations that are almost vertical and discontinuous planes with the strikes of $N8^{\circ}E$. The major joints have the strikes of N4 to $52^{\circ}W$ and N6 to $88^{\circ}E$ and the dips of 42 to $89^{\circ}$. Especially thee development of the joints that cross the major joints causes tile structural instability of the rock. The host rock of the Buddha image is separated into many different rock masses because of the also many different discontinuity, which group accounts for about $12{\%}$ of the rock. Thus it's estimated that the bed rock has not only plane and toppling failure but also wedge failure in all the sides. Since the earth pressure and the inclination pressure are imposed on the body of the Buddha in the basement rock, it's urgent to give a treatment of geotechnical engineering for the sake of its structural stability. The parts where serious fractures are seen should receive the hardening process using the fillers for stones. It's also necessary to introduce a landfill liner system in order to reduce the ground humidity. The rock surface of the Buddha statue are partly contaminated by lichens and bryophyte. The joints have turned into earth, which promotes the growth of weeds and plant roots. Thus biochemical treatments should also be considered to get rid of the vegetation along the discontinuous planes and prevent further biological damages.

  • PDF