• 제목/요약/키워드: Forming Parameter

검색결과 191건 처리시간 0.028초

금속사출성형을 이용한 STS 316L 밸브피팅 제작에 대한 연구 (A Study of STS 316L Threaded Elbow Fitting Fabrication by Metal Injection Molding)

  • 김재영;김성조;정성택;안석영
    • 소성∙가공
    • /
    • 제24권2호
    • /
    • pp.121-129
    • /
    • 2015
  • A net-shape forming of small and complex-shaped metal parts by metal injection molding (MIM) has economic advantages in mass production, especially for STS 316L valve fitting. STS 316L offers excellent corrosion resistance, but it has poor machinability, which is a limitation in using it for a cost-effective production where both forging and machining are employed. Simulation and experimental analysis were performed to develop a MIM STS 316L 90° elbow fitting minimizing trial and error. A Taguchi method was used to determine which input parameter was the most sensitive to possible defects (e.g. sink mark depth) during the injection molding. The final prototype was successfully built. The results indicate that the simulation tool can be used during the design process to minimize trial and error, but the final adjustment of parameters based on field experience is essential.

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • 황유빈;이응관;최희채;정용재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

인공신경망을 적용한 선상가열시 강판의 곡률변형 추정 (Application of Neural Network to the Estimation of Curvature Deformation of Steel Plates in Line Heating)

  • 전병재;김현준;양박달치
    • 한국해양공학회지
    • /
    • 제20권4호
    • /
    • pp.24-30
    • /
    • 2006
  • Different methods exist for the estimation of thermaldeformation of plates in the line heating process. These are based on the assumption of residual strains in the heat-affected zone, known as the method of inherent strains, or simulated relations between heating conditions and residual deformations. The purpose of this paper is to develop a simulator of thermal deformation in the line heating, using the artificial neural network. Curvature deformations for the plate-forming are investigated, which can be used as a prime deformation parameter in the process. The curvature of plates are calculated using the approximation of plate surface by NURBS. Line heating experiments for 11 specimens of different thickness and heating conditions were performed. Two neural networks predicting the maximum temperature and curvature deformations at the heating line are studied. It was concluded that the thermal deformations predicted by the neural network can be used in a line heating simulator, which is considered an attractive and practical alternative to the existing methods.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • 제15권4호
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

Enthalpy - based homogenization procedure for composite piezoelectric modules with integrated electrodes

  • Kranz, Burkhard;Benjeddou, Ayech;Drossel, Welf-Guntram
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.579-594
    • /
    • 2013
  • A new enthalpy - based procedure for the homogenization of the electromechanical material parameters of composite piezoelectric modules with integrated electrodes is presented. It is based on a finite element (FE) modeling of the latter's representative volume element (RVE). In contrast to most previously published homogenization approaches that are based on averaged quantities, the presented method uses a direct evaluation of the electromechanical enthalpy. Hence, for the linear orthotropic piezoelectric composite behavior full set of elastic, piezoelectric, and dielectric material parameters, 17 load cases (LC) are used where each load case leads directly to one material parameter. This gives the possibility to elaborate a very strict and easy to program processing. In conjunction with the 17 LC, the enthalpy - based homogenization is particularly suitable for laminated composite piezoelectric modules with integrated electrodes. In this case, the electric load has to be given at the electrodes rather than at the RVE FE model boundaries. The proposed procedure is validated through its comparison to literature available results on a classical 1-3 piezoelectric micro fiber (longitudinally polarized) reinforced composite and a $d_{15}$ shear piezoelectric macro-fiber (transversely polarized) composite module.

Local $H{\alpha}$ Emitters: Low-z Analogs of z>4 Star-Forming Galaxies

  • 심현진
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.71.1-71.1
    • /
    • 2012
  • We have identified local analogs of strong $H{\alpha}$ Emitters (HAEs) that dominate the z~4 Lyman-break galaxy population using the Sloan Digital Sky Survey (SDSS). At z<0.4, only 0.04% of galaxies are classified as HAEs with $H{\alpha}$ equivalent width larger than $500{\AA}$, comparable to that of z~4 HAEs. The $H{\alpha}$-to-UV luminosity ratio of local HAEs is consistent with that of z~4 HAEs, indicating relatively large specific star formation rate in these galaxies compared to traditionally studied UV-selected Lyman break analogs. Local HAEs are young, less evolved galaxies with low metallicity. It is still difficult to constrain whether the star formation in local HAEs is powered by minor mergers or by cosmological cold gas accretion. However, the stacked optical spectrum of local HAEs shows several strong ionization lines, for example HeII 4686 emission line, which are shown in Wolf-Rayet galaxies. Thus it is highly likely that local HAEs are galaxies with an elevated ionization parameter, either due to a high electron density or large escape fraction of hydrogen ionizing photons.

  • PDF

FINITE ELEMENT MODELING AND PARAMETER STUDY OF HALF-BEAD OF MLS CYLINDER HEAD GASKET

  • CHO S. S.;HAN B. K.;LEE J. H.;CHANG H.;KIM B. K.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.109-114
    • /
    • 2006
  • Half-beads of multi-layer-steel cylinder head gaskets take charge of sealing of lubrication oil and coolant between the cylinder head and the block. Since the head lifts off periodically due to the combustion gas pressure, both the dynamic sealing performance and the fatigue durability are essential for the gasket. A finite element model of the halfbead has been developed and verified with experimental data. The half-bead forming process was included in the model to consider the residual stress effects. The model is employed to assess the dependence of the sealing performance and the fatigue durability on the design parameters of half-bead such as the width and height of bead and the flat region length. The assessment results show that the sealing performance can be enhanced without significant deterioration of the fatigue durability in a certain range of the half-bead width. In the other cases the improvement of sealing performance is accompanied by the loss of the fatigue durability. Among three parameters, the bead width has the strongest influence.

Development of an Acoustic-Based Underwater Image Transmission System

  • 최영철;임영곤;박종원;김시문;김승근
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.109-114
    • /
    • 2003
  • Wireless communication systems are inevitable for efficient underwater activities. Because of the poor propagation characteristics of light and electromagnetic waves, acoustic waves are generally used for the underwater wireless communication. Although there are many kinds of information type, visual images take an essential role especially for search and identification activities. For this reason, we developed an acoustic-based underwater image transmission system under a dual use technology project supported by MOCIE (Ministry of Commerce, Industry and Energy). For the application to complicated and time-varying underwater environments all-digital transmitter and receiver systems are investigated. Array acoustic transducers are used at the receiver, which have the center frequency of 32kHz and the bandwidth of 4kHz. To improve transmission speed and quality, various algorithms and systems are used. The system design techniques will be discussed in detail including image compression/ decompression system, adaptive beam- forming, fast RLS adaptive equalizer, ${\partial}/4$ QPSK (Quadrilateral Phase Shift Keying) modulator/demodulator, and convolution coding/ Viterbi. Decoding.

  • PDF

다단 미세 치형 허브 기어의 프레스 성형기술개발 (Development of Press Forming Technology for the Multistage Fine Tooth Hub Gear)

  • 김동환;이정민;이상호;변현상;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 2005
  • This paper deals with the aspects of die design for the multistage fine tooth hub gear in the cold forging process. In order to manufacture the cold forged product fur the precision hub gear used as the ARD 370 system of bicycle, it examines the influences of different designs on the metal flow through experiments and FE-simulation. To find the combination of design parameters which minimize the damage value, the low gear length, upper gear length and inner diameter as design parameters are considered. An orthogonal fraction factorial experiment is employed to study the influence of each parameter on the objective function or characteristics. The optimal punch shape of fine tooth hub gear is designed using the results of FE-simulation and the artificial neural network. To verify the optimal punch shape, the experiments of the cold forging of the hub gear are executed.

  • PDF

인장응력과 H2S 부식의 복합조건 하에서 고강도 강재의 수소확산 거동 분석을 위한 Numerical 확산모델과 이론적 고찰 (Theoretical Considerations of Numerical Model for Hydrogen Diffusion Behavior of High-Strength Steel Under Combined Action of Tensile Stress and H2S Corrosion)

  • 김성진
    • Corrosion Science and Technology
    • /
    • 제18권3호
    • /
    • pp.102-109
    • /
    • 2019
  • The hydrogen diffusion and trapping model with a numerical finite difference method (FDM) was modified and extended to accommodate $H_2S$ corrosion and scale forming processes of high-strength steel under tensile stress condition. The newly proposed diffusion model makes it possible to clearly understand combined effect of tensile stress and $H_2S$ corrosion process on hydrogen diffusion behaviors. The core concept of this theoretical approach is that overall diffusion behavior is separated into diffusion process through two respective layers: an outer sulfide scale and an inner steel matrix. Diffusion coefficient values determined by curve-fitting permeation data reported previously with the newly proposed diffusion model indicate that the application of tensile stress can contribute to continual increase in the diffusivity in the sulfide scale with a high density of defect. This suggests that the scale with a lower stability under the stress condition can be a key parameter to enhance hydrogen influx in the steel matrix. Consequently, resistance to hydrogen assisted cracking of the steel under tensile stress can be decreased significantly.