• Title/Summary/Keyword: Forming Manufacturing System

Search Result 198, Processing Time 0.026 seconds

OPTIMAL PROCESSING AND SYSTEM MANUFACTURING OF A LASER WELDED TUBE FOR AN AUTOMOBILE BUMPER BEAM

  • Suh, J.;Lee, J.H.;Kang, H.S.;Park, K.T.;Kim, J.S.;Lee, M.Y.;Jung, B.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.209-216
    • /
    • 2006
  • A study has been conducted for an optimal processing and an apparatus for manufacturing a laser welded tube for one-body formed bumper beam. The tube dimensions used in calculation were the thickness of 1.4 mm, the diameter of 105.4 mm and the length of 2000 mm. The tube was formed of a cold rolled high strength steel plate(tensile strength of 600 MPa). The two-roll bending method was the optimal tube forming process in comparison with the UO-bending method, the bending method on the press brake, the multi-step continuous roll-forming method and the 3-roll bending method. Monitoring of the welding quality was conducted and the seam tracking along the butt-joint lengthwise to the tube axis was also examined. The longitudinal butt-joint was welded by using a $CO_2$ laser welding machine equipped with a seam tracker and a plasma sensor. The $CO_2$ laser tube welding machine could be used for precise seam tracking and real-time monitoring of the welding quality. As a result, the developed laser welded tube could be used for a one-body formed automobile bumper beam.

A study on a hot forging process monitoring for measurement of indirect forging force in flange bolt forming of titanium alloys (티타늄 합금 플랜지 볼트 성형에서의 단조력 간접 측정을 위한 열간 단조 공정 모니터링에 관한 연구)

  • Ha, Seok-Jae;Choi, Doo-Sun;Lee, Dong-Won;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2021
  • The objective of this study is to introduce the new possibility of sensing technology based on inductive displacement sensors to monitor the status of wheel position in the hot forging process. In order to validate effectiveness of proposed sensing technology, the indirect forging force measurement with displacement sensor was applied into a typical closed hot forging die-set used for the manufacturing of flange bolts. The locations to implement the displacement sensor were selected carefully by simulating forming process and static structural. From the measurement results of the forging force change during one hot forging cycle, it was found that the proposed monitoring system can provide useful information to understand the detailed behaviors of die-set in the closed hot forging process.

An Experimental Study on Cross-sectional Deformation in 2D Tube Bending: Stretch, Bending Sequence and Bending Angle (2차원 튜브벤딩의 단면 변형에 관한 실험적 연구: 인장, 벤딩 시퀀스 및 벤딩 각도 중심으로)

  • T. Ha
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.221-227
    • /
    • 2023
  • While tube bending is a conventional forming technique, it is still used to make curved products for load-bearing members or aesthetically pleasing parts in various manufacturing industries such as automotive, aerospace, and others. Whole or local deformation of the final product such as springback, distortion, or local buckling are of interest in metal forming or precision manufacturing. In this paper, the factors affecting the cross-sectional deformation are explored. A 5-axis stretch bending machine was used for two-dimensional bending with extruded AA6082-T4 rectangular tubes. Three different bending sequences were employed: stretch before bending, stretch after bending, simultaneous bending and stretch. Furthermore, by considering both the stretch and bending angle, cross-sectional deformation was also analyzed. It was observed that employing stretch bending techniques can effectively reduce cross-sectional deformation and contribute to overall quality enhancement. Through this study, it was revealed that these factors have an impact on the cross-sectional deformation of the tubes.

Core Technology Development for Micro Machining Process on Large Surface (대면적 미세 가공공정 원천기술 개발)

  • Lee, Seok-Woo;Lee, Dong-Yoon;Song, Ki-Hyeong;Kang, Ho-Chul;Kim, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.769-776
    • /
    • 2011
  • In order to cope with the requirements of smaller patterns, larger surfaces and lower costs in the fields of displays, optics and energy, greater attentions is now being paid to the development of micro-pattern machining technology. Compared with flat molds, roll molds have the advantages of short delivery, ease of manufacturing larger surfaces, and continuous molding. This paper presents the state-of-the-art of the micro pattern machining technology on the roll molds and introduces some research results on the machining process technology. The copper and nickel-phosphorous-alloy plating process, machining process technology for uniform micro patterns. micro cutting simulation and the real time monitoring system for micro machining are summarized. The developed technologies have led the complete localization of the prism sheets and will be applied to the direct forming process with succeeding research & development.

Fabrication of RFID TAG Micro Pattern Using Ultrasonic Convergency Vibration (초음파 융합진동을 이용한 미세패턴성형 기술 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.175-180
    • /
    • 2020
  • In this study, we developed a micropattern technology in the shape of RFID TAG antenna using ultrasonic micropattern manufacturing system developed to enable micropattern technology. The ultrasonic tool horn in longitudinal vibration mode was installed in the micropattern manufacturing system to develop the ultrasonic press technology for the micropattern antenna shape of the RFID TAG antenna shape on the insulating sheet surface. The ultrasonic shaping technology was manufactured by applying the resonance design technique to a 60kHz tool horn, and by using the micropattern manufacturing system, the coil wire having a thickness of 25㎛ can be ultrasonically press-molded on an insulating sheet of 200㎛ or less. In ultrasonic press technology, the antenna shape having a minimum line width of 150㎛ could be molded without disconnection, peeling, or twisting of the coil wire.

Physical Test and Finite Element Analysis of Elastomer for Steel Rack Tube Forming (일체형 랙 튜브 성형을 위한 고 탄성체 물성시험과 유한요소 해석)

  • Woo, C.S.;Park, H.S.;Lee, G.A.
    • Elastomers and Composites
    • /
    • v.43 no.3
    • /
    • pp.173-182
    • /
    • 2008
  • Rubber-pad forming process for materials such as metal in which portions of the die which act upon the material is composed of a natural or synthetic rubber or elastomer material. This makes the rubber pad forming process relatively cheap and flexible, high accuracy for small product series in particular. In this study, we carried out the physical test and finite element analysis of elastomer such as natural rubber and urethane for steel rack rube forming. The non-linear property of elastomer which are described as strain energy function are important parameter to design and evaluate of elastomer component. These are determined by material tests which are uni-axial tension and bi-axial tension. This study is concerned with simulation and investigation of the significant parameters associated with this process.

Design of a Condenser Lens System using a Thin Lens Combination (얇은 렌즈 조합을 이용한 집속 렌즈 시스템 설계)

  • Lim, Sun-Jong;Choi, Ji-Yeon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.517-522
    • /
    • 2011
  • Most of SEM is double condenser lens system. Two condenser lenses are required to provide the high demagnification ratios necessary for forming nanometer probes. The thin lens concept provides a highly useful basis for preliminary calculations in a broad range of situations. It is an easy way to understand the electron beam paths in column. Demagnification is easily calculated by this method. In this paper, we present design processes for condenser lens's demagnification by using thin lens combination model. Also, we verify the reliability of our design processes by comparing the modeled demagnification with these of corrected condenser lens.

A study on improvement of manufacturing process of aluminum chassis drive gear (알루미늄 섀시 드라이브 기어 제조공정 개선에 관한 연구)

  • Lee, Chun-Kyu;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.26-30
    • /
    • 2018
  • The aluminum chassis drive gear manufacturing process improvement has been very effective in both technical and economic aspects. Technology for Shear mold design technology, mold material selection and processing technology, and press molding technology has improved greatly overall. In the meantime, it is necessary to clarify the causes of defects that occur frequently due to lack of technology, Based on this, it is meaningful that it has secured the ability to respond to new product development and molding in the future. By applying these technologies, we plan to expand not only the drive gear chassis, but also various types of press forming such as frame, handle, various fastening parts of system window. In addition, the ability to develop precision products in the future is expected to become a driving force in further enhancing the competitiveness of companies.

A Study on the Bending Process for Precision Pipe Forming (정밀 파이프 성형을 위한 벤딩 공정 개발에 관한 연구)

  • Kim, Hyun-Jin;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.58-65
    • /
    • 2007
  • The arbitrarily-bended pipe is widely used in a heat exchanger system. Thus, the pipe bending process has important role in performance and productivity of heat exchanger system. The purpose of this study is to investigate the bending process for manufacturing of sound pipe. And, the spring-back effect and the variation of pipe thickness should be controlled effectively. The change of spring-back ratio and the thickness variation of pipe according to the change of bending radius, bending angle and pipe thickness are analyzed by FEM analysis. The analytic results are compared with the experimental data, accordingly the results show good agreement. The method of the analysis can be applied for manufacturing of precision bended pipe.

Hydro-forming Process of Automotive Engine Cradle by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 엔진 크레들의 하이드로-포밍 공정 연구)

  • Kim, Kee-Joo;Choi, Byung-Ik;Sung, Chang-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2008
  • Recently, the use of tubes in the manufacturing of the automobile parts has increased and therefore many automotive manufactures have tried to use hydro-forming technology. The hydro-forming technology may cause many advantages to automotive applications in terms of better structural integrity of the parts, lower cost from fewer part count, material saving, weight reduction, lower spring-back, improved strength and durability and design flexibility. In this study, the whole process of front engine cradle (or front sub-frame) parts development by tube hydro-forming using steel material having tensile strength of 440MPa grade is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydro-formability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape on automotive sub-frame by hydro-forming process were carefully investigated. Overall possibility of hydro-formable sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, preforming and hydro-forming. At the die design stage, all the components of prototyping tools are designed and interference with press is examined from the point of geometry and thinning.