• Title/Summary/Keyword: Forming Energy

Search Result 722, Processing Time 0.02 seconds

Experimental Study on Mode-I Energy Release Rate of Polypropylene Adhesive Layer Manufactured by Microwave Composite Forming Process (마이크로파 복합재 성형 공정을 이용한 폴리프로필렌 접착층의 모드 I 에너지 해방률에 대한 실험적 연구)

  • Park, E.T.;Kim, T.J.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2022
  • Recently, the composite material market is gradually growing. Various composite forming processes have been developed in order to reduce the production cost of the composite material. Unlike the conventional forming process, the microwave composite forming process has the advantage of reducing the processing time because the composite material is heated directly or indirectly at the same time. Due to this advantage, in this study, a double cantilever beam test was conducted with specimens manufactured by the microwave composite forming process. The purpose of this study was to compare mode-I energy release rate for specimens manufactured by prepreg compression forming and microwave composite forming processes. First, a microwave oven was proposed to conduct the microwave composite forming process. Double cantilever beam specimens were manufactured. After that, the double cantilever beam test was conducted to obtain the mode-I energy release rate. Mode-I energy release rates of specimens manufactured by the microwave composite forming and prepreg compression forming processes were then compared. As a result, mode-I energy release rates of specimens fabricated by the microwave composite forming process were similar to those fabricated with the prepreg compression forming process with a relatively reduced process time.

Comparison of Energy Consumptions for Various Forming Processes (성형 가공 차이에 의한 에너지 소비량 비교)

  • Yin, Z.H.;Zhang, Y.J.;Chae, M.S.;Park, B.C.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.333-336
    • /
    • 2008
  • There are many different kinds of forming processes to make a tubular product such as hydroforming and tube drawing. However, we should consider a better forming process in view point of energy consumption and $CO_2$ emission to save our earth. In this paper we have conducted FEM simulations to the various forming processes for sheet and tubular products to compare their energy consumptions. One example is tubular product and the other for drawn cup. From the comparisons of total energy for hydrofroming and tube sinking processes, hydroforming is consumed more energy than tube drawing. Also the cup drawing from sheet metal and tube sinking for the cup with flange indicate that the tube sinking is better than cup drawing of sheet metal in energy consumption.

  • PDF

Small Electrode Ring Forming by Multi-Forming Process (멀티 성형 가공법을 활용한 전극용 소형 링 성형)

  • Yoon, Il-Chae;Ko, Tae-Jo;Lee, Chun;Kim, Hui-Sul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.38-45
    • /
    • 2009
  • Recently, LCD Backlight Unit is being replaced from cold cathode fluorescent lamp(CCFL) to external electrode fluorescent lamp(EEFL) because the EEFL has high energy efficiency and long life. Also, it can reduce energy consumption and weight. So far, external electrode ring for EEFL is produced by sheet metal press forming process. Therefore it had low precision and much material loss. To solve these problems, Multi-Forming process that has five step forming process was invented. However, low productivity is another barrier. Product speed that is controlled by the rotational speed cannot be increased due to the unsatisfied design specification. The reason is that the gap between rolled two edge parts of the sheet plate is tightly inspected. Regarding this factor, the understanding of forming behavior to each process is inevitable. This paper describes the CAE analysis of the multi-forming process by PAM-STAMP.

  • PDF

Steel processing effects on crash performance of vehicle safety related applications

  • Doruk, Emre
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.351-358
    • /
    • 2017
  • Due to the increasing competition, automotive manufacturers have to manufacture highly safe and light vehicles. The parts which make up the body of the vehicle and absorb the energy in case of a crash, are usually manufactured with sheet metal forming methods such as deep drawing, bending, trimming and spinning. The part may get thinner, thicker, folded, teared, wrinkled and spring back based on the manufacturing conditions during manufacturing and the type of application methods. Transferring these effects which originate from the forming process to the crash simulations that are performed for vehicle safety simulations, makes accurate and reliable results possible. As a part of this study, firstly, the one-step and incremental sheet metal forming analysis (deep drawing + trimming + spring back) of vehicle front bumper beam and crash boxes were conducted. Then, crash performances for cases with and without the effects of sheet metal forming were assessed in the crash analysis of vehicle front bumper beam and crash box. It was detected that the parts absorbed 12.89% more energy in total in cases where the effect of the forming process was included. It was revealed that forming history has a significant effect on the crash performance of the vehicle parts.

Finite Element Inverse Analysis of an S-rail Forming Process with Direct Mesh Mapping Method and Crash Analysis considering Forming Effects (직접격자 사상법을 이용한 S-rail 성형공정의 유한요소 역해석 및 성형효과를 고려한 충돌해석)

  • Kim, Seung-Ho;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.125-128
    • /
    • 2002
  • The automotive industry have made an effort to reduce the weight of vehicle structures with increased safety, while initial model of the final product does not contain any prehistoric effects in a design stave. It takes lots of time to calculate forming effects that have great influences on the energy absorption of structures. In this paper, finite element inverse analysis is adopted to calculate forming effects, such as thickness variation and effective plastic strain as well as an initial blank shape with small amount of computation time. Crash analysis can be directly performed after inverse analysis of the forming process without remeshing scheme. The direct mesh mapping method is used to calculate an initial guess from the sliding constraint surface that is extracted from the die and punch set. Analysis results show that energy absorption of structures is increased with consideration of forming effects and finite element inverse analysis is usefully applicable to calculate forming erects of vehicle structures for the crash analysis.

  • PDF

Crash Analysis of the ULSAB-AVC Model with Considering Forming Effects (박판성형가공을 고려한 자동차 충돌해석)

  • Huh, H.;Yoon, J.H.;Bao, Y.D.;Kim, S.H.;Park, S.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.556-561
    • /
    • 2006
  • Most of auto-body members are composed of stamping parts. These parts have the non-uniform thickness and plastic work hardening distribution during the forming process. This paper is concerned with the side impact analysis of the ULSAB-AVC model according to the US-SINCAP in order to compare the crashworthiness between the model with and without considering the forming effect. The forming effect is ca]ciliated by one-step forming analysis for several members. The crashworthiness is investigated by comparing the deformed shape of the cabin room the energy absorption characteristics and the intrusion velocity of a car. The result of the crash analysis demonstrates that the crash mode, the load-carrying capacity and energy absorption can be affected by the forming effect. It is noted that the design of an autobody should be carried out considering the forming effect for accurate assessment of crashworthiness.

Analysis of Cylindrical Tube Forming Process Using Polyurethane (고탄성체를 이용한 실린더 튜브의 축관 성형 연구)

  • La, W,K;Lee, H.W;Choi, S.;Lim, S.J;Woo, C.S.;Lee, G.A
    • Transactions of Materials Processing
    • /
    • v.15 no.5 s.86
    • /
    • pp.354-359
    • /
    • 2006
  • The elastomer forming process was employed for many operations which included piercing, sheet metal forming and tube metal forming process. This paper presents cylindrical tube forming process using rubber material such as polyurethane. For elastomer forming process, tensile tests at room temperature were performed to obtain the material properties of polyurethane and tube. In particular, biaxial tensile test were carried out to obtain the coefficient of strain energy function of the rubber material. Finite element analyses were also carried out to investigate the forming load and formability of tube. It was compared with the experimental results about the forming load and the formability of tube. From these results, it was investigated a forming process to decrease the forming load for elastomer forming process.

Correlation between Eum, Yang, Ki and Blood Metabolism and Obesity (음양기혈대사(陰陽氣血代謝)와 비만(肥滿)의 상관관계)

  • Shin, Soon Shik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This paper aims to present a model of obesity and leanness based on eum, yang, ki and blood metabolism of Korean medicine. I analyzed the theory of eum, yang, ki and blood metabolism, yang transforming ki and eum forming the body on Korean medicine, and compared them with energy homeostasis by anabolism and catabolism of modern medicine. In the eum and yang theory, the metabolic process of the human body is dominated by synergism and antagonism between eum force and yang force. When the balance of eum and yang collapses, all the pathological actions of the human body appear, and in the eum and yang metabolic process, an imbalance between yang transforming ki and eum forming the body occurs. The function of yang transforming ki is reduced to ki deficiency, and the function of eum forming the body is increased to blood excess. When blood excess and ki deficiency is given, energy intake increases, energy expenditure decreases, overweight and obesity occur. On the contrary, the function of yang transforming ki is increased to ki excess, and the function of eum forming the body is decreased to blood deficiency. When ki excess and blood deficiency is done, energy intake decreases and energy expenditure increases, the body becomes leanness. When the balance of eum, yang, ki and blood metabolism collapses and becomes blood excess and ki deficiency, overweight and obesity occur, and when ki excess and blood deficiency is done, the body becomes leanness. The energy homeostasis of the human body can be explained by eum, yang, ki and blood metabolism of Korean medicine and it contains the concept of anabolism and catabolism of modern medicine.

INVESTIGATION ON PREDICTION OF FORMING LIMIT FOR COLD UPSETTING BY UTILIZING ENERGY FRACTURE CRITERION

  • Lee Rong-Shean;Wang Shui-To;Chen Jih-Hsing
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.22-25
    • /
    • 2003
  • The forming limits are studied for cold upsetting of high strength aluminium alloy in the present paper. Different geometry ratio and frictional conditions are investigated in the forgeability test to evaluate the forming limits and also to obtain the various strain paths. The critical fracture value can be obtained by integrating along the strain path till free surface crack initiation. To predict the damage evolution of cold upsetting, the computer-aided evaluation of forming limits is obtained by using the finite-element software DEFORM-3D and the modified Cockcroft-Latham criterion. The predicted theoretical limit strains agree quite well with the experimental results.

  • PDF

A method of calculating strain state and forming severity analysis for axisymmetric sheet formed parts. (축대칭 프레스가공 제품의 변형률 예측기술과 변형여유 해석에의 적용)

  • 박기철;남재복;최원섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.173-184
    • /
    • 1994
  • A method of obtaining deformation severity of axisymmetric shape deep-drawn products was developed. Strain states of products produced by single or multi-stage drawing were predicted by using finite element analysis. This method used minimization of potential energy between the known shape of final product and the unknown in initial blank. And that was done numerically by nonlinear finite element method. Deformation theory of plasticity was used for practical purposes. From predicted strain states of drawn parts, deformation severity was found by using forming limit diagrams.