• Title/Summary/Keyword: Forming Defects

Search Result 276, Processing Time 0.023 seconds

STUDY OF POLYMETHYL METHACRYLATE BONE CEMENT CONTAINING BOVINE-DERIVED DEFATTING DEMINERALIZED BONE POWDER (탈지방탈회우골분말과 Polymethyl Methacrylate(PMMA) Bone Cement 혼합제에 관한 연구)

  • Kim, Woon-Kyu;Kim, Su-Gwan;Cho, Se-In;Ko, Young-Moo;Yoon, Jung-Hoon;Ahn, Jong-Mo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.6
    • /
    • pp.491-497
    • /
    • 2001
  • Polymethylmethacrylate(PMMA) is currently commonly used material for the reconstruction of bone defects and fixation of joint prosthetics following congenital and acquired causes. Although PMMA has widespread use, it does not possess the ideal mechanical characteristics with osteoconductivity and osteoinductivity required. In order to overcome these problem, addition of bovine bone drived defatting demineralized bone(BDB) powders to a PMMA bone cement was done for improvement of physical property and bone forming characteristics of composite. In order to investigate the influence of BDB reinforcement on the PMMA, we measured physical property of compressive, tensile, flexural strength, and scanning electron microscopic examinations. The results were obtained as follows: 1. The PMMA forms a solid cellular matrix with open cells about $100{\mu}m$ in variable size and incorporating BDB. BDB aggregates inside the cells form a porous network that is accessible from the outer surface. 2. The physical properties were compressive strength of mean $22.74{\pm}1.69MPa$, tensile strength of mean $22.74{\pm}1.69MPa$, flexural strength of mean $77.53{\pm}6.93MPa$. Scanning electron microscopic examinations were revealed that there was DBD particles form a highly porous agglomerates. BDB can be added PMMA in the form of dried powders, the composites are applicable as bone substitutes. BDB and PMMA mixture is shown to produce a class of composites that due to their microstructure and improved mechanical properties may be suitable for application as bone subsitutes. The mechanical and material properties of the BDB-PMMA bone substitute composites are competitive with those properties of a porous ceramic matrix of other hydroxyapatite and with those of natural bones.

  • PDF

Mad1p, a Component of the Spindle Assembly Checkpoint in Fission Yeast, Suppresses a Novel Septation-defective Mutant, sun1, in a Cell Division Cycle

  • Kim In G.;Rhee Dong K.;Jeong Jae W.;Kim Seong C.;Won Mi S.;Song Ki W.;Kim Hyong B.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.162-172
    • /
    • 2002
  • Schizosaccharomyces pombe is suited for the study of cytokinesis as it divides by forming a septum in the middle of the cell at the end of mitosis. To enhance our understanding of the cytokinesis, we have carried out a genetic screen for temperature-sensitive S. pombe mutants that show defects in septum formation and cell division. Here we present the isolation and characterization of a new temperature-sensitive mutant, sun1(septum uncontrolled), which undergoes uncontrolled septation during cell division cycle at restrictive temperature $(37^{\circ}C)$. In sun1 mutant, actin ring and septum are positioned at random locations and angles, and nuclear division cycle continues. These observations suggest that the sun] gene product is required for the proper placement of the actin ring as well as precise septation. The sun] mutant is monogenic recessive mutation unlinked to previously known various cdc genes of S. pombe. In a screen for $sunl^+$ gene to complement the sun] mutant, we have cloned a gene, $susl^+$(suppressor of sun1 mutant), that encodes a protein of 689 amino acids. The predicted amino acid sequence of $susl^+$ gene is similar to the human hMadlp and Saccharomyces cerevisiae Mad1p, a component of the spindle checkpoint in eukaryotic cells. The null mutant of $susl^+$ gene grows normally at various temperatures and has the increased sensitivity to anti-microtubule drug, while $susl^+$ mutant shows no sensitivity to microtubule destabilizing drugs. The putative S. pombe Sus1p directly interacts with S. pombe Mad2p in yeast two-hybrid assays. These data suggest that the newly isolated susr gene encodes S. pombe Mad1p and suppresses sun] mutant defective in controlled septation in a cell division cycle.

  • PDF

The Improvement of Fabrication Process for a-Si:H TFT's Yield (a-Si:H TFT의 수율 향상을 위한 공정 개선)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1099-1103
    • /
    • 2007
  • TFT's have been intensively researched for possible electronic and display applications. Through tremendous engineering and scientific efforts, a-Si:H TFT fabrication process was greatly improved. In this paper, the reason on defects occurring at a-Si:H TFT fabrication process is analyzed and solved, so a-Si:H TFT's yield is increased and reliability is improved. The a-Si:H TFT of this paper is inverted staggered type TFT. The gate electrode is formed by patterning with length of $8{\mu}m{\sim}16{\mu}m$ and width of $80{\sim}200{\mu}m$ after depositing with gate electrode (Cr). We have fabricated a-SiN:H, conductor, etch-stopper and photo-resistor on gate electrode in sequence, respectively. We have deposited n+a-Si:H, NPR(Negative Photo Resister) layer after forming pattern of Cr gate electrode by etch-slower pattern. The NPR layer by inverting pattern of upper Sate electrode is patterned and the n+a-Si:H layer is etched by the NPR pattern. The NPR layer is removed. After Cr layer is deposited and patterned, the source-drain electrode is formed. The a-Si:H TFT made like this has problems at photo-lithography process caused by remains of PR. When sample is cleaned, this remains of PR makes thin chemical film on surface and damages device. Therefor, in order to improve this problem we added ashing process and cleaning process was enforced strictly. We can estimate that this method stabilizes fabrication process and makes to increase a-Si:H TFT's yield.

Morphology control of glassy carbon coating layer to additive ethylene glycol and phenolic resin (페놀수지 및 에틸렌 글리콜을 첨가한 유리질 카본 코팅층의 물성 제어)

  • Joo, Sang Hyun;Joo, Young Jun;Lee, Hyuk Jun;Sim, Young Jin;Park, Dong Jin;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.3
    • /
    • pp.89-95
    • /
    • 2022
  • In this study, glassy carbon coating was performed on the graphite using a phenolic resin and a curing agent was mixed with ethylene glycol as an additive to form the uniform surface. The phenolic resin was dried and cured under the environments of hot air, then converted into a glassy carbon layer by pyrolysis at 500~1,500℃. FTIR, XRD, SEM analysis, and density/porosity/contact angle measurement were performed for characterization of glassy carbon. The pyrolysis temperature for high-quality glassy carbon was optimized to be about 1,000℃. As the content of the additive increased, the effect of reducing surface defects on the coated surface, reduction of porosity, increase of contact angle, and increase of density were investigated in this study. The method of forming a glassy carbon coating layer through an additive is expected to be applicable to graphite coating and other fields.

Mineralogical Characterization of the Chuncheon Nephrite: Mineral Facies, Mineral Chemistry and Pyribole Structure (춘천 연옥 광물의 광물학적 특성 : 광물상, 광물 화학 및 혼성 격자 구조)

  • Noh, Jin Hwan;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.57-79
    • /
    • 1993
  • Chuncheon nephrite, which was formed by the polymetasomatic alteration of dolomitic marble, can be classified into pale green, green, dark green, and grey types on the basis of their occurrence, mineralogical and textural characteristics. The nephrites consist obiefly of fibrous or hairlike(length/width ratio>10) cryptocrystalline(crystal width < $2{\mu}m$) tremolite, and include less amounts of micro-crystalline diopside, calcite, clinochlore, and sphene as impurities. The oriented and rather curved crystal aggregate, of nephritic tremolite are densely interwoven, resulting in a massive-fibrous texture which may explain the characteristic toughness of nephritic jade. The characteristic greenish color of the nephrite may be preferably related to Fe rather than Cr and Ni. However, the variation of color and tint in the Chuncheon nephrite also depends on the mineralogical and textural differences such as crystallinity, texture, and impurities. The chemical composition of the nephritic tremolite is not stoichiometric and rather dispersed especially in the abundances of Al, Mg, and Ca. Al content and Mg/Ca ratio for the nephritic tremolite are slightly increased with deepening in greenish color of the nephrite. Fe content in the nephritic tremolite is generally very low, but comparatively richer in the dark green nephrite. In nephritic tremolite, wide-chain pyriboles are irregularly intervened between normal double chains, forming a chain-width disorder. Most nephritic tremolites in the Chuncheon nephrite show various type of chain-width defects such as triple chain(jimthompsonite), quintuple chain (chesterite), or sometimes quadruple chain in HRTEM observations. The degree of chain-width disorder in the nephritic tremolite tends to increase with deepening in greenish color. Triple chain is the most common type, and quadruple chain is rarely observed only in the grey nephrite. The presence of pyribole structure in the nephritic tremolite is closely related to the increase of Al content and Mg/Ca ratio, a rather dispersive chemical composition, a decrease of relative intensity in (001) XRD reflection, and an increase in b axis dimension of unit cell. In addition, the degree and variation of chain-width disorder with nephrite types may support that an increase of metastability was formed by a rapid diffusion of Mg-rich fluid during the nephrite formation.

  • PDF

Effect of Matrigel for Bone Graft using Hydroxyapatite/Poly $\varepsilon$-caprolactone Scaffold in a Rat Calvarial Defect Model (랫드의 두개골결손부 모델에서 HA/PCL 지지체를 사용한 골이식 시 Matrigel의 효과)

  • Kim, Se-Eun; Shim, Kyung-Mi;Kim, Seung-Eon;Choi, Seok-Hwa;Bae, Chun-Sik;Han, Ho-Jae;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.325-329
    • /
    • 2010
  • The osteogenic potential of hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) scaffolds with matrigel was evaluated in a rat calvarial defect model. Calvarial defect formation was surgically created in Sprague Dawley rats (n = 18). HA/PCL scaffold was grafted with matrigel (M-HA/PCL group, n = 6) or without matrigel (HA/PCL group, n = 6). A critical defect group (CD group, n = 6) did not received a graft. Four weeks after surgery, bone formation was evaluated with radiography, micro computed tomography (micro CT) scanning, and histologically. No bone tissue formation was radiographically evident in the CD group. Bone tissue was radiographically evident in the HA/PCL and M-HA/PCL groups, however, there was more bone-similar opacity in the M-HA/PCL group. Micro CT analysis revealed that the bone volume of the M-HA/PCL group was higher than the HA/PCL group, however, no significant difference was found between the HA/PCL and M-HA/PCL groups. Bone mineral density in the M-HA/ PCL group was significantly higher than in the HA/PCL group (p < 0.05). Histologically, new bone was formed only from existing bone in the CD group, showing concavity without bone formation in the defect. In the HA/PCL group, new bone formation was only derived from existing bone, while in the M-HA/PCL group the largest bone formation was observed, with new bone tissue forming at the periphery of existing bone and around the HA/PCL scaffold with matrigel. The results indicate that the combination of HA/PCL scaffold with matrigel may be an effective means of enhancing bone formation in critical-sized bone defects.