• Title/Summary/Keyword: Forming Defects

Search Result 277, Processing Time 0.025 seconds

Prevention of Internal Defects of Cold Extruded Planetary Gears (냉간 압출된 유성기어의 내부결함 방지)

  • Lee, J.-H.;Choi, J.;Lee, Y.-S.;Choi, S.-H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.168-173
    • /
    • 1999
  • It is investigated that internal defect of planetary gear which consists of two gears with different number of teeth on both side. The internal defect, central burst, begin to form at the place of adiabatic shear band which usually has maximum ductile fracture value during the forming operation, forward and backward extrusion. It makes the plastic forming of planetary gear difficult. The prediction of defect to minimize the cost to produce the planetary gear. The finite element simulation code DEFORM is applied to analyze the defects. In the analysis, the toothed gears are assumed as axisymmetric cylinders whose diameters are equal to those of pitch circles of the each gears. Experiments were carried out with the SCM415 alloy steel as billet material and AIDA 630-ton knuckle-joint press. The calculated results and experimental inspections are compared to design a die and blank without defects and the results are useful to predict the internal defect.

  • PDF

Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing (금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가)

  • Lee, Sung-Yun;Lee, In-Kyu;Jeong, Myeong-Sik;Lee, Jae-Wook;Lee, Seon-Bong;Lee, Sang-Kon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

Development of Manufacturing Technology for Center Floor Cross Member with Roll Forming Process (롤 포밍 공법을 이용한 고강도 차체 부품 제작 기술 개발)

  • Kim, D.K.;Park, S.E.;Cho, K.R.;Lee, K.H.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.297-300
    • /
    • 2009
  • The roll forming process is often used to manufacture long, thin-walled products such as a pipe. The final cross-section is a comparatively simple open-channel, a closed tube section or a complex profile with several bends. In recent years, that process is often applied to the bumper beam in the automotive industries. In this study, a optimal Center Floor Cross Member manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle, and also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

The Study of Manufacturing Technology for Front Side Member Lower (고강도 차체부품 제작 기술에 대한 연구)

  • Park, S.E.;Kim, D.K.;Lee, Y.J.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.293-296
    • /
    • 2009
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal front side member manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle. And also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF

Process Design in Precision Press Forming of Electronic Components (정밀 전자부품 성형을 위한 소성가공 공정설계)

  • 변상규;최한호;강범수
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.79-91
    • /
    • 1995
  • Precision forming of electronic components has appeared to be competitive according to manufacturing cost and dimensional tolerances. Now domestic electronic companies have been involving in utilization of the finite element method in process design of precision forming. A forming process to produce an electronic component, aperture, has been inbestigated to find out forming defects during multi-operations. The applications of the commercial FEM software MARC show a possibility of defect in precision coining process among the whole multi-process. Thus the coining process of three-dimensional deformation is analyzed using DAMF-3D which has been developed in this lab with the rigid-plastic algorithm. The result f simulations by DAMF-3D provides clear description of the defect involved in the coining process.

  • PDF

The Influence of the Number of Drawbead on Blank Forming Analysis (블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구)

  • 정동원;이상제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

CAE of Sheet Metal Forming Processes - The Present Status and The Future Prospect (박판성형에서의 CAE - 현황과 전망)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.25-36
    • /
    • 1994
  • The sheet metal forming process is one of the most important manufacturing processes in the modern industry. From the view point of mechanics involved, it is very difficult to predict whether a newly designed sheet metal part can be formed without defects such as fracture, wrinkling and surface unevenness, etc. In order to reduce the effort taken in the trial-and-error process and to control the process effectively, a systematic method for process modeling is to required. The aim of sheet forming simulation through the process modeling is to reduce the lead time for die disign and manufacture by process modeling is to reduce the lead time for die design and manufacture by means of investigating the deformation mechanics and the mutual interaction between the process parameters. In this paper, the necessity, the present status, and the future technology about CAE of sheet forming simulation have been discussed.

A study on reduction of springback defects in excavator tank cover part (굴삭기 Tank Cover 부품 뒤틀림 불량 저감에 대한 연구)

  • Jeon, Yong-Jun;Lee, Ha-Sung;Kim, Dong-Earn;Heo, Young-Moo
    • Design & Manufacturing
    • /
    • v.12 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • With the recent strengthening of environmental regulations and the need for cost reduction, excavators, a type of construction equipment, are being miniaturized while components are being developed in consideration of stability. In the case of excavator press parts, mainly high-strength steel sheets are being used to enhance stability and reduce weight. However, in the case of high-strength materials, there is a need to research product forming methods to reduce Springback in defects arising in parts assembly due to Springback that result from the internal residual stress that occurs in press forming being released after product forming. Accordingly, regarding the tank cover, an excavator press-forming part, this study selected a method to reduce distortion through analysis of the Springback occurrence rate and Springback causes through a forming analysis. A forming analysis was conducted for the Springback of the tank cover. Deformations of 13.714 mm in the upper part and 6.244 mm in the inner part of the product occurred, while wrinkles occurred on the sides of the product due to uneven thickness. A forming analysis was conducted for the major shapes of the product to investigate the causes of Springback. Distortion deformation due to the bead in the center of the product was confirmed to be a large factor. A Springback reduction method of correcting uneven thickness in the product sides, a Springback reduction method of removing the bead, and a correction method of restriking after the final forming were used in a forming analysis to determine the degree of Springback reduction. For the forming method to correct uneven thickness in the sides, deformation was reduced by 12% in the upper side compared to the existing model, but deformation in the inner side increased by 1%. For the restriking forming method, deformation decreased by 25% in the upper side and 13% in the inner side. For the bead removal method, deformation decreased by 28% in the upper side and 13% in the inner side, the largest Springback correction results. This indicates that the bead has a large affect on Springback.

The Study of Manufacturing Technology for a Sill Side by Roll Forming (다단 성형 기술을 이용한 차체 부품 개발)

  • Kim, D.K.;Han, S.W.;Jeon, H.J.;Cheon, S.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.6
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.

Application of Machine Learning to Predict Web-warping in Flexible Roll Forming Process (머신러닝을 활용한 가변 롤포밍 공정 web-warping 예측모델 개발)

  • Woo, Y.Y.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.282-289
    • /
    • 2020
  • Flexible roll forming is an advanced sheet-metal-forming process that allows the production of parts with various cross-sections. During the flexible process, material is subjected to three-dimensional deformation such as transverse bending, inhomogeneous elongations, or contraction. Because of the effects of process variables on the quality of the roll-formed products, the approaches used to investigate the roll-forming process have been largely dependent on experience and trial- and-error methods. Web-warping is one of the major shape defects encountered in flexible roll forming. In this study, an SVR model was developed to predict the web-warping during the flexible roll forming process. In the development of the SVR model, three process parameters, namely the forming-roll speed condition, leveling-roll height, and bend angle were considered as the model inputs, and the web-warping height was used as the response variable for three blank shapes; rectangular, concave, and convex shape. MATLAB software was used to train the SVR model and optimize three hyperparameters (λ, ε, and γ). To evaluate the SVR model performance, the statistical analysis was carried out based on the three indicators: the root-mean-square error, mean absolute error, and relative root-mean-square error.