• Title/Summary/Keyword: Forming Characteristic

Search Result 336, Processing Time 0.032 seconds

A Study on Tensile Behavior of Transparent Polycarbonate (PC) Plate in the High Temperature (투명 폴리카보네이트 판재의 고온 인장 거동에 관한 연구)

  • Lee, Ho Jin;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • Recently, several researchers made their endeavor to manufacture the photobioreactor(PBR) with characteristic shapes form vacuum and blow forming process. Hence, behaviors of the transparent polycarbonate(PC) plate in the high temperature region should be examined to obtain the desired PBR case via vacuum and blow forming processes. The aim of this paper is to investigate tensile behavior of PC plate in the high temperature. Various tensile tests were performed using high temperature tensile testing machine. The influence of tensile speed, thickness and ambient temperature on tensile behavior in the high temperature was examined. The flow stress and tensile strength augmented when the tensile speed increased. In order to obtain proper flow curves with strain rate effects for different temperature of specimen, G'sell-Jonas model was adopted. The material constants of the G'sell-Jonas model were estimated. The flow curves of the PC plate considering the tensile speed, specimen thickness and temperature were obtained.

Evaluation of Wear Characteristics of AISI H13 Tool Steel Repaired by Metal 3D Printing (금속 3D 프린팅으로 보수된 AISI H13 금형강 마모특성 평가)

  • Lee, Sung-Yun;Lee, In-Kyu;Jeong, Myeong-Sik;Lee, Jae-Wook;Lee, Seon-Bong;Lee, Sang-Kon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2017
  • In hot forming process, the dies in which excessive worn or crack occurs is reused after repair. Generally hot forming dies are recycled through a welding repair method. Welding repair methods are highly dependent on the skills of engineer. It causes process defects such as dimensional defects and structural defects. Recently, the metal 3D printing method has been applied to the repair of used dies. The aim of this study is to evaluate the wear characteristics of AISI H13 tool steel repaired by 3D printing method. Three kinds of wear specimens were fabricated by using 3D printing, welding, and initial material. A pin-on-disk wear test was carried out to evaluate the wear characteristics. From the result of wear test, the wear characteristics of 3D printing method was superior to that of the welded material, and was similar to that of the initial material.

A Study on Processing Methods of New Materials Applied to Biomimicry Characteristics (바이오미미크리 특성이 적용된 신재료 가공방법 연구)

  • Ji, Ju-Yeon;Seo, Ji-Eun
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.367-375
    • /
    • 2013
  • Using the 'New material' concept has recently been introduced into the natural characteristics. In the course of such a, Janine M. Benyus has proposed to mimic the characteristics of natural ecosystems to mention the concept of Biomimicry. Process made engineered using technical elements for representing the material properties of Biomimicry such will be acting importantly, This study intends to analyze how new materials applied to 'Biomimicry' characteristics are processed in space. The results were as follows : 1) Processing methods of new materials resulted as 'Forming', 'Surface treatment', 'Bonding', 'Inserting'. These four were divided and analyzed into 'Form', 'System', 'Adaptation'. As a result of this analysis, such significances were shown as 'Forming/Surface treatment/Bonding' in 'Form', 'Bonding' in 'System' and 'Adaptation'. 2) 'Bonding' applied to 'System' of new material can be recycled to be combined with other materials through the existing adhesive material, and present as a solution of 'Sustainable development'. 3) 'Bonding' applied to 'Adaptation' of new material is to impart the ability to react to the environment through the joint, but is characteristic, at this time, using digital and other field technology. It appeared primarily that it can be known to meet the social trends and convergence between fields. Thus, as the finish that are friendly to the environment from the interior design, the results of the study are expected to be utilized in the study of new materials guidelines.

Development of stress correction formulae for heat formed steel plates

  • Lim, Hyung Kyun;Lee, Joo-Sung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.141-152
    • /
    • 2018
  • The heating process such as line heating, triangular heating and so on is widely used in plate forming of shell plates found in bow and stern area of outer shell in a ship. Local shrinkage during heating process is main physical phenomenon used in plate forming process. As it is well appreciated, the heated plate undergoes the change in material and mechanical properties around heated area due to the harsh thermal process. It is, therefore, important to investigate the changes of physical and mechanical properties due to heating process in order to use them plate the design stage of shell plates. This study is concerned with the development of formula of plastic hardening constitutive equation for steel plate on which line heating is applied. In this study the stress correction formula for the heated plate has been developed based on the numerical simulation of tension test with varying plate thickness and heating speed through the regression analysis of multiple variable case. It has been seen the developed formula shows very good agreement with results of numerical simulation. This paper ends with usefulness of the present formula in examining the structural characteristic of ship's hull.

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Identification of the Bulk Behavior of Coatings by Nanoindentation Test and FE-Simulation and Its Application to Forming Analysis of the Coated Steel Sheet (나노인덴테이션 시험과 유한요소해석을 이용한 자동차 도금 강판의 도금층 체적 거동결정 및 성형해석 적용)

  • Lee, Jung-Min;Lee, Kyoung-Su;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1425-1432
    • /
    • 2006
  • Coating layers on a coated sheet steel frequently affect distributions of strain rate of sheets and deteriorate the frictional characteristics between sheets and tools in sheet metal forming. Thus, it is important to identify the deformation behavior of these coatings to ensure the success of the sheet forming operation. In this study, the technique using nano-indentation test, FE-simulation and Artificial Neural Network(ANN) were proposed to determine the power law stress-strain behavior of coating layer and the power law behavior of extracted coating layers was examined using FE-simulation of drawing and nano-indentation process. Also, deep drawing test was performed to estimate the formability and frictional characteristic of coated sheet, which was calculated using the linear relationship between drawing force and blank holding force obtained from the deep drawing test. FE-simulations of the drawing process were respectively carried out for single-behavior FE-model having one stress-strain behavior and for layer-behavior FE-model which consist of coating and substrate separately. The results of simulations showed that layer-behavior model can predict drawing forces with more accuracy in comparison with single-behavior model. Also, mean friction coefficients used in FE-simulation signify the value that can occur maximum drawing force in a drawing test.

Glass Forming Ability and Characteristic Evaluation in Ca-Mg-Zn Alloy System (Ca-Ma-Zn 합금계에서 비정질 형성능 및 특성 평가)

  • Park, Eun-Soo;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • The effect of alloy composition on the glass forming ability (GFA) of the Ca-rich Ca-Mg-Zn alloys has been investigated in $Ca_{65}Mg_{5+x}Zn_{30-x}$ and $Ca_{55+x}Mg_{15}Zn_{30-x}$ (x=0, 5, 10, 15, 20) alloys. In a wide composition range of 15-25% Zn and 10-20% Mg bulk metallic glass (BMG) samples with the diameter larger than 6 mm are fabricated by conventional copper mold casting method in air atmosphere. Among the alloys investigated, the $Ca_{65}Mg_{15}Zn_{20}$ alloy exhibits the highest GFA enabling to form BMG sample with the diameter of at least 15 mm. The crystalline phase formed during solidification of $Ca_{65}Mg_{15}Zn_{20}$ ($D_{max}=15\;mm$) could be identified as a mixture of $Ca_3Zn$ and $CaMg_2$ cause by the redistribution of the constituent elements on long-range scale. The compressive fracture strength and fracture elongation of the $Ca_{65}Mg_{15}Zn_{20}$ BMG are 602 MPa and 2.08% respectively. The ${\sigma}$ parameter which has been recently proposed for evaluating GFA exhibits better correlation with GFA of Ca-Mg-Zn alloys than other parameters suggested so far such as ${\Delta}T_x$, $T_{rg}$, K, ${\gamma}$, and ${\Delta}T^*$ parameters.

Investigation of Flavor-Forming Starter Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803 in Miniature Gouda-Type Cheeses

  • Lee, Hye Won;Kim, In Seon;Kil, Bum Ju;Seo, Eunsol;Park, Hyunjoon;Ham, Jun-Sang;Choi, Yun-Jaie;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1404-1411
    • /
    • 2020
  • Lactic acid bacteria (LAB) play an important role in dairy fermentations, notably as cheese starter cultures. During the cheese production and ripening period, various enzymes from milk, rennet, starter cultures, and non-starter LABs are involved in flavor formation pathways, including glycolysis, proteolysis, and lipolysis. Among these three pathways, starter LABs are particularly related to amino acid degradation, presumably as the origins of major flavor compounds. Therefore, we used several enzymes as major criteria for the selection of starter bacteria with flavor-forming ability. Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803, isolated from Korean raw milk and cucumber kimchi, were confirmed by using multiplex PCR and characterized as starter bacteria. The combinations of starter bacteria were validated in a miniature Gouda-type cheese model. The flavor compounds of the tested miniature cheeses were analyzed and profiled by using an electronic nose. Compared to commercial industrial cheese starters, selected starter bacteria showed lower pH, and more variety in their flavor profile. These results demonstrated that LDTM6802 and LDTM6803 as starter bacteria have potent starter properties with a characteristic flavor-forming ability in cheese.

TRAO-TIMES: Investigating Turbulence and Chemistry in Two Star-forming Molecular clouds

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Choi, Yunhee;Evans, Neal J. II;Offner, Stella S.R.;Baek, Giseon;Lee, Yong-Hee;Choi, Minho;Kang, Hyunwoo;Cho, Jungyeon;Lee, Seokho;Tatematsu, Ken'ichi;Heyer, Mark H.;Gaches, Brandt A.L.;Yang, Yao-Lun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • Turbulence produces the density and velocity fluctuations in molecular clouds, and dense regions within the density fluctuation are the birthplace of stars. Also, turbulence can produce non-thermal pressure against gravity. Thus, turbulence plays a crucial roles in controlling star formation. However, despite many years of study, the detailed relation between turbulence and star formation remain poorly understood. As part of the Taeduk Radio Astronomy Observatory (TRAO) Key Science Program (KSP), "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale (TIMES; PI: Jeong-Eun Lee)", we mapped two star-forming molecular clouds, the Orion A and the ρ Ophiuchus molecular clouds, in six molecular lines (13CO 1-0/C18O 1-0, HCN 1-0/HCO+ 1-0, and CS 2-1/N2H+ 1-0) using the TRAO 14-m telescope. We applied the Principal Component Analysis (PCA) to the observed data in two different ways. The first method is analyzing the variation of line intensities in velocity space to evaluate the velocity power spectrum of underlying turbulence. We investigated the relation between the star formation activities and properties of turbulence. The other method is analyzing the variation of the integrated intensities between the molecular lines to find the characteristic correlation between them. We found that the HCN, HCO+, and CS lines well correlate with each other in the integral shaped filament in the Orion A cloud, while the HCO+ line is anti-correlate with the HCN and CS lines in L1688 of the Ophiuchus cloud.

  • PDF

Evaluation of Formability for Warm Forging of The Bevel Gear on The Lubricants and Surface Roughness (윤활제 및 표면 거칠기에 따른 베벨기어의 온간단조 성형성 평가)

  • Kim Dong-Hwan;Kim Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.21-28
    • /
    • 2005
  • In the hot forging process lubricant influences on frictional condition only, but in the warm forging process it influence on the formability such as dimensional accuracy, filling state and frictional condition and it is important to estimate a lubricating characteristic of lubricants in the warm forging. In this paper, in order to evaluate the formability of billet in warm forging process according to the lubricant and lubricating method, lubricant and lubricating test have been performed using oil-based and water-based lubricant which were widely used in the hot and warm forging processes. The surface roughness of initial billet was measured to evaluate the influence on the formability of billet and the forming load and dimensional accuracy were compared and evaluated. From the experimental results, it can be known that water-based lubricants are more excellent than oil-based lubricants for warm forging of complex shape like a bevel gear. Also, in this study characteristics of deformation have been investigated according to surface treatment of initial billet.