• 제목/요약/키워드: Formed tool

검색결과 380건 처리시간 0.021초

평면이방성 박판성형공정의 3차원 유한요소해석 (3-D FEM Analysis of Forming Processes of Planar Anisotropic Sheet Metal)

  • 이승열;금영탁;박진무
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2113-2122
    • /
    • 1994
  • The 3-D FEM analysis for simulating the stamping operation of planar anisotropic sheet metals with arbitrarily-shaped tools is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The consistent full set of governing relations, comprising equilibrium equation and mesh-normal geometric constraints, is appropriately linearized. The linear triangular elements are used for depicting the formed sheet, based on membrane approximation. Barlat's non-quadratic anisotropic yield criterion(strain-rate potential) is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and non-quadratic function parameter. The planar anisotropic finite element formulation is tested with the numerical simulations of the stamping of an automotive hood inner panel and the drawing of a hemispherical punch. The in-plane anisotropic effects on the formability of both mild steel and aluminum alloy sheet metals are examined.

A Comparative Study of Transistor and RC Pulse Generators for Micro-EDM of Tungsten Carbide

  • Jahan, Muhammad Pervej;Wong, Yoke San;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.3-10
    • /
    • 2008
  • Micro-electrical discharge machining (micro-EDM) is an effective method for machining all types of conductive materials regardless of hardness. Since micro-EDM is an electro-thermal process, the energy supplied by the pulse generator is an important factor in determining the effectiveness of the process. In this study, an investigation was conducted on the micro-EDM of tungsten carbide (WC) to compare the performance of transistor and resistance/capacitance (RC) pulse generators in obtaining the best quality micro-hole. The performance was measured by the machining time, material removal rate, relative tool wear ratio, surface quality, and dimensional accuracy. The RC generator was more suited for minimizing the pulse energy, which is a requirement for fabricating micro-parts. The smaller-sized debris formed by the low-discharge energy of RC micro-EDM could be easily flushed away from the machined zone, resulting in a surface free of burrs and resolidified molten metal. The RC generator also required much less time to obtain the same quality micro-hole in WC. Therefore, RC generators are better suited for fabricating micro-structures, producing good surface quality and better dimensional accuracy than the transistor generators, despite their higher relative tool wear ratio.

Asymmetric Multiple-Image Encryption Based on Octonion Fresnel Transform and Sine Logistic Modulation Map

  • Li, Jianzhong
    • Journal of the Optical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.341-357
    • /
    • 2016
  • A novel asymmetric multiple-image encryption method using an octonion Fresnel transform (OFST) and a two-dimensional Sine Logistic modulation map (2D-SLMM) is presented. First, a new multiple-image information processing tool termed the octonion Fresneltransform is proposed, and then an efficient method to calculate the OFST of an octonion matrix is developed. Subsequently this tool is applied to process multiple plaintext images, which are represented by octonion algebra, holistically in a vector manner. The complex amplitude, formed from the components of the OFST-transformed original images and modulated by a random phase mask (RPM), is used to derive the ciphertext image by employing an amplitude- and phase-truncation approach in the Fresnel domain. To avoid sending whole RPMs to the receiver side for decryption, a random phase mask generation method based on SLMM, in which only the initial parameters of the chaotic function are needed to generate the RPMs, is designed. To enhance security, the ciphertext and two decryption keys produced in the encryption procedure are permuted by the proposed SLMM-based scrambling method. Numerical simulations have been carried out to demonstrate the proposed scheme's validity, high security, and high resistance to various attacks.

3차원 보로노이 다이어그램을 활용한 건축 디자인 생성 프로세스에 관한 연구 (A Study on the Process of the Architectural Design Generation based on the 3D Voronoi Diagram)

  • 박종진;전한종
    • 한국CDE학회논문집
    • /
    • 제14권5호
    • /
    • pp.306-313
    • /
    • 2009
  • This paper presents the unique formation process of a volumetric space with the digital algorithm developed for Voronoi diagram in order to generate an effective parametric architectural form. By applying systematic parameters of architectural conditions within digital parametric tools, the interactions among sub-spaces developed by Voronoi diagram are enhanced by manipulating the spatial structures. In this paper, we discuss how the parametric distributing and zoning geometrical system can support designers in developing a free-formed space, and research on how this system creates a 3D volumetric space. With the in-depth research on the system and structure of Voronoi diagram, the approaches to the application of Voronoi diagram into architectural form generation are clarified to be an effective, creative and successful digital tool. The result of the application of the Voronoi diagram improves the design quality with systematic language in the sense that the sub-regions are created and controlled under the systematic and balanced hierarchy having dynamic relationships among each others with the restoration of the equilibrium of forces and tensions. This 3-dimensional Voronoi diagram provides another means for designers to solve architectural issues and to reinforce their design concepts.

가압경수로의 노심내 핵연료관리용 탐색도구의 개발 (Development of In-Core Fuel Management Scoping Tools for PWR)

  • Kim, Chang-Hyo;Kim, Teak-Kyum
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.20-27
    • /
    • 1993
  • 이 논문은 가압경수로의 노심내 핵연료 관리용 탐색코드를 개발하기 위한 것이다. 이 목적으로 점반응도모형을 사용하여 핵연료주기 결정을 위한 FCYPRM코드를 제작하였고, 수정형 Borresen의 소격확산모형과 노달전개법에 의한 중성자 공간 해석용 CMSNAP코드를 개발하였다. 또한 수치 실험을 통하여 일련의 경험칙을 수립하고 이들을 이용하여 재장전노심 핵연료집합체 배치코드로서 ALPS코드를 개발하였다. 수치계산결과를 예시함으로서 개개 코드들의 유용성과 응용성을 입증하였으며, 이들 코드들을 가압경수로의 재장전노심 설계문제를 해결하기 위한 코드로 합성, 응용함으로서 상기 코드들이 효과적인 탐색코드가 될 수 있음을 보였다.

  • PDF

전자기 성형시 금형과 소재의 접촉에 따른 성형성 개선 예측 (Prediction of the Formability Enhancement from Electromagnetic Forming due to Interaction between Tool and Blank Sheet)

  • 이연희;김홍교;노학곤;안우진;김정
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.199-204
    • /
    • 2015
  • Electromagnetic Forming is a high speed forming technology which uses electromagnetic (Lorentz’s) forces to shape sheet metal parts. In the current study the effect of the tool-sheet interaction during electromagnetic forming on formability enhancement is investigated using FEM. The decrease in void volume fraction by having the sheet contact with die helps to improve formability. The main purpose of the current study was to predict improvement of formed sheets whether the sheet contacts or does not contact the die under experimental conditions and 3-D finite element analysis. The results show that fractures caused by the voids in the forming sheet appear only in some specific cases and the bulge height of the conical shape was shorter than the height with a free bulge. For the same height conditions, however, the formability was improved for the conical-shaped die when there is sheet contact with the die.

PVD CrN 코팅 금형의 TRIP1180 판재 성형 시 금형의 표면상태에 따른 제품 표면특성 평가 (Characterization of Product Surface according to Tool Surface Conditions when Forming TRIP1180 Steel Sheets with PVD CrN-coated Tools)

  • 방준호;배기현;김민기;이명규;김홍기;송정한
    • 소성∙가공
    • /
    • 제32권5호
    • /
    • pp.247-254
    • /
    • 2023
  • This study conducted the wear tests on bending punches coated with PVD CrN and examined the surface quality of the product formed by each punch in the forming of uncoated TRIP1180 sheets. The study quantitatively estimated the surface quality of the product by measuring the roughness and imaging the product surface. The correlation between the punch wear depth and the product surface roughness was quantitatively analyzed. The results showed that before failure occurs, the product roughness was comparable with that of the as-received, and the product surface was smooth without scratches and defects. However, after failure, the punch wear is caused by fretting wear mechanism, and a punch whose coating is not completely peeled plows the product surface, resulting in severe scratches with grooves and ridges on the product surface. Severe wear on the punch surface caused by fretting wear can rapidly degrade the product surface quality as it is directly affected by the punch surface condition, and the product surface quality accurately reflects the punch wear condition.

고빈도 수온 자료를 이용한 팔당호의 성층과 흐름 변화 분석 (Analyzing Flow Variation and Stratification of Paldang Reservoir Using High-frequency W ater Temperature Data)

  • 류인구;이보미;조용철;최황정;신동석;김상훈;유순주
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.392-404
    • /
    • 2020
  • The focus of this study was to quantify the thermal stratification and analyze the relationship between the stratification structure and the tributaries to understand flow variations in the Paldang Reservoir. The vertical distribution of the temperature and density gradients, and the depth and thickness of the thermocline were quantitatively calculated using a lake physics tool (rLakeAnalyzer) and high-frequency monitoring data. Based on a density gradient of 0.2 kg/㎥/m, the thermocline was formed from mid-May to early-September 2019 and the other periods were weakly stratified or mixed. The thickness of the thermocline was developed until 4.7 m and the depth of the thermocline was formed at a depth of 3 - 6 m at the front of the Paldang Reservoir. During the formation of the thermocline, the Namhangang and Gyeongancheon tributaries with relatively high water temperature (low-density) flowed into the upper layer of the reservoir, and the Bukhangang tributary with low water temperature (high-density) mainly affected the lower layer of the reservoir. This is because the density currents were formed due to the difference in the water temperature of the tributaries. The findings of this study may be used for constructing high-frequency monitoring and quantitative data analyses of reservoirs.

스마트 기기용 강화유리&사파이어 유리 전용 가공기의 진동해석을 통한 설계 개선에 관한 연구 (A Study on Design Improvement by Vibration Analysis of Hardened Glass & Sapphire Machining Equipment for Smart IT Parts Industry)

  • 조준현;박상현;안범상;이종찬
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.51-56
    • /
    • 2016
  • High brittleness is a characteristic of glass, and in many cases it is broken during the process of machining due to processing problems, such as scratches, chipping, and notches. Machining defects occur due to the vibration of the equipment. Therefore, design techniques are needed that can control the vibration generated in the equipment to increase the strength of tempered glass. The natural frequency of the machine tool via vibration analysis (computer simulation) must be accurately understood to improve the design to ensure the stability of the machine. To accurately understand the natural frequency, 3D modeling, which is the same as actual apparatus, was used and a constraint condition was also applied that was the same as that of the actual apparatus. The maximum speeds of ultrasonic and high frequency, which are 15,000 rpm and 60,000 rpm, respectively, are considerably faster than those of typical machine tools. Therefore, an improved design is needed so that the natural frequency is formed at a lower region and the natural frequency does not increase through general design reinforcement. By restructuring the top frame of the glass processing, the natural frequency was not formed in the operating speed area with the improved design. The lower-order natural frequency is dominant for the effects that the natural frequency has on the vibration. Therefore, the design improvement in which the lower-order natural frequency is not formed in the operating speed area is an optimum design improvement. It is possible to effectively control the vibrations by avoiding resonance with simple design improvements.

매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향 (Effect of NbC Carbide Addition on Mechanical Properties of Matrix-Type Cold-Work Tool Steel)

  • 강전연;김호영;손동민;이재진;윤효윤;이태호;박성준;박순근
    • 열처리공학회지
    • /
    • 제28권5호
    • /
    • pp.239-249
    • /
    • 2015
  • Various amount of NbC carbide was intentionally formed in a matrix-type cold-work tool steel by controlled amount of Nb and C addition. And the effect of NbC addition on the mechanical properties was investigated. Four alloys with different Nb and C contents were cast by vacuum induction melting, then hot forging and spheroidizing annealing were conducted. The machinability of the annealed specimens was examined with 3 different cutting tools. And tensile tests at room temperature were conducted. After quenching and tempering, hardness and impact toughness were measured, while wear resistance was evaluated by disk-on-plate type wear test. The increasing amount of NbC addition resulted in degraded machinability with increased strength, whereas the absence of NbC also led to poor machinability due to high toughness. After quenching and tempering, the additional NbC improved wear resistance with increasing hardness, whereas it deteriorated impact toughness. Therefore, it could be found that a moderate addition of NbC was desirable for the balanced combination of mechanical properties.