• 제목/요약/키워드: Formaldehyde emission

검색결과 186건 처리시간 0.025초

Effect of Temperature and Bake-out on Formaldehyde Emission from UF Bonded Wood Composites

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권2호
    • /
    • pp.91-100
    • /
    • 2012
  • This study analysis the effect of various temperatures (20, 35 and $50^{\circ}C$) on the formaldehyde emission from wood composites, which were particleboard (PB), medium density fiberboard (MDF), high density fiberboard (HDF) and laminated HDF (L-HDF) by Japanese desiccator method. Also, to reduce formaldehyde emission by wood composites, it has been suggested that undergo a bake-out conditions. On average, the level of formaldehyde emission increased many times with a $15^{\circ}C$ increase in temperature from 20 to $35^{\circ}C$ for PB, MDF, HDF and L-HDF, respectively. Formaldehyde emissions from wood composites could be expected to increase with increasing ambient temperature. At $35$ for 28 days bake-out treatment of boards, the free formaldehyde emission reduced 67.8% (PB), 40.1% (MDF), 37.8% (HDF), and 35.2% (L-HDF). On the other hand, after the bake-out at $50^{\circ}C$ for 28 days, the formaldehyde concentration decreased by 88.2, 66.9, 62.2 and 59.3% of the concentration before the bake-out for PB, MDF, HDF and L-HDF, respectively. An interesting of the bake-out treatment at $50^{\circ}C$ after 14 days, formaldehyde emission grade of PB & MDF down $E_2$ to $E_1$, and HDF & L-HDF down $E_1$ to $E_0$.

Formaldehyde Emissions and Moisture Content Change of Wood Composites during Bake-out

  • Lee, Young-Kyu;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권2호
    • /
    • pp.101-109
    • /
    • 2012
  • Wood composites are a hygroscopic material and have ability to exchange its moisture content with air. This study investigated the formaldehyde emission and moisture content change of four wood composites (particleboard (PB), medium density fiberboard (MDF), high density fiberboard (HDF), laminated HDF (L-HDF)) as a function of bake-out temperature and time. The composites were baked out for 1, 3, 5, 7, 10, 14, 21, and 28 days at temperatures of $20{\pm}2$, $35{\pm}2$, and $50{\pm}2^{\circ}C$ in a dry oven. The moisture content change was used to determine the emission bake-out of the composites. Best bake-out time results were obtained with after 7 days all composites. Formaldehyde emission values of composites decreased with decreasing moisture content for both temperatures. The formaldehyde emission results of bake-out temperature 35 and $50^{\circ}C$ showed a similar tendency.

폐목재 탄화물로 제조한 파티클보드의 물성과 포름알데히드 방출량 (Properties and Formaldehyde Emission of Particleboards Fabricated with Waste Wood Charcoal)

  • 박상범;이상민;박종영;강은창
    • 한국가구학회지
    • /
    • 제18권3호
    • /
    • pp.205-210
    • /
    • 2007
  • Particleboard(PB) is one of the most commonly used wood-based composite materials, which can be prepared by utilizing any kind of low grade wooden materials like waste wood which contains formaldehyde itself. Therefore, PB have been of considerable interest, in issues regarding the formaldehyde emission problems. Wood wastes are carbonized by the carbonization kiln at $800^{\circ}C$. Charcoal has been known as a formaldehyde adsorber. Thus, in this study, we fabricated PBs with carbonized waste particles cores, to examine the possibility of developing less formaldehyde emitting boards. The physical and mechanical properties were evaluated by Korean Standard (KS F 3104). The moisture content of PBs ranged from 6.76 to 8.36%. Internal bond strengths decreased with the increase in the content of carbonized core particles. Formaldehyde emission showed minimum value at 25% of carbonized core particles, but the emission values increased when the amount of carbonized cote particles increased. When 25% of carbonized core particles was used, PBs met KS F 3104 standard properties.

  • PDF

Comparison of Formaldehyde Emission Rate and Formaldehyde Content from Rice Husk Flour Filled Particleboard Bonded with Urea-Formaldehyde Resin

  • Lee, Young-Kyu;Kim, Sumin;Kim, Hyun-Joong;Lee, Hwa Hyoung;Yoon, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권5호
    • /
    • pp.42-51
    • /
    • 2006
  • The this study, the effect of rice husk flour (RHF) as scavenger on formaldehyde emission rate and formaldehyde content from urea-formaldehyde (UF) resin bonded RHF content wood particleboards (PB). Two type of particle size ($30{\mu}m$ and $300{\mu}m$) of RHF was premixed with the UF resin at 5% and 15% by weight. The performance of UF resins is greatly influenced by the curing characteristics in their curing processing. The curing behavior was monitored activation energy ($E_a$) by DSC and pH variation according to RHF contents. PB with dimensions of $27cm{\times}27cm{\times}0.7cm$ was prepared at a specific gravity of 0.75 using $E_1$ and $E_2$ class UF resins. Formaldehyde emission and formaldehyde content from RHF filled PB bonded with UF resin was measured by 24 h desiccator and perforator method, respectively. RHF causes an increased pH of UF resin. $E_a$ of the modified UF resin decreased independently of RHF particle size. As the pH and the $E_a$ variation of the UF resin containing RHF increased, the amount of formaldehyde content decreased. The formaldehyde emission and formaldehyde content levels of the PB bonded with 15 wt% of $30{\mu}m$ RHF and $E_2$ type UF resin were low and satisfied grade $E_1$, as measured by 24 h desiccator and perforator method. The result of a comparison between 24 h desiccator and perforator test using PB showed that the linear regression analyses show a good correlation between the results for the 24 h desiccator and the perforator tests. The linear regression of a correlation between the desiccator and the perforator was Y=4.842X-0.064 ($R^2=0.989$). RHF was effective at reducing formaldehyde emission and formaldehyde content in urea-formaldehyde adhesives when used as scavenger.

Environment-friendly Adhesives for Fancy Veneer Bonding of Engineered Flooring to Reduce Formaldehyde and TVOC Emissions

  • Kim, Sumin;Kim, Hyun-Joong;Xu, Guang Zhu;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권5호
    • /
    • pp.58-66
    • /
    • 2007
  • The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring. Urea-formaldehyde (UF)-tannin and melamine-formaldehyde (MF)/PVAc hybrid resin were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. Wattle tannin powder (5 wt%) was added to UF resin and PVAc (30 wt%) to MF resin. These adhesive systems showed better bonding than commercial UF resin with a similar level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial UF resin, UF-tannin and MF/PVAc hybrid resin. By desiccator method, the formaldehyde emission level of UF resin showed the highest but was reduced by replacing with UF-tannin and MF/PVAc hybrid resin. MF/PVAc hybrid satisfied the $E_1$ grade (below $1.5mg/{\ell}$). VOC emission results by VOC analyzer were similar with the formaldehyde emission results. TVOC emission was in the following order: UF > UF-tannin > MF/PVAc hybrid resin.

목질판상제품의 포름알데히드 방출등급과 항균성 평가 (Evaluation of Anti Fungal Efficacy on Different Formaldehyde Level of Wood-Based Composite Panels)

  • 손동원;박상범
    • 한국가구학회지
    • /
    • 제24권3호
    • /
    • pp.257-262
    • /
    • 2013
  • This study was carried out to investigate the susceptibility of wood-based composite panels exposed to mould and sap-stain fungi. Five wood deterioration fungi (three mould fungi, two sap stain fungi) were inoculated into two types of commercial wood-based composite panels (medium density fiberboard and particleboard), which have three class of formaldehyde emission. All wood-based composite panels were more or less susceptible to mould and sap stain fungi. The attacking mode of the fungi was highly dependent on formaldehyde emission. This study indicates that all wood-based composite panels, specially low formaldehyde emission class panels should be considered to prevent fungal deterioration when they are used for exterior and humid interior applications.

  • PDF

Properties of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde to Urea Mole Ratios

  • Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권5호
    • /
    • pp.67-75
    • /
    • 2007
  • As a part of abating the formaldehyde emission of urea-formaldehyde (UF) resin adhesive by lowering formaldehyde to urea (F/U) mole ratio, this study was conducted to investigate properties of UF resin adhesive with different F/U mole ratios. UF resin adhesives were synthesized at different F/U mole ratios of 1.6, 1.4, 1.2, and 1.0. Properties of UF resin adhesives measured were non-volatile solids content, pH level, viscosity, water tolerance, specific gravity, gel time and free formaldehyde content. In addition, a linear relationship between non-volatile solids content and sucrose concentration measured by a refractometer was established for a faster determination of the non-volatile solids content of UF resin. As F/U mole ratio was lowered, non-volatile solids content, pH, specific gravity, water tolerance, and gel time increased while free formaldehyde content and viscosity were decreased. These results suggested that the amount of free formaldehyde strongly affected the reactivity of UF resin. Lowering F/U mole ratio of UF resin as a way of abating formaldehyde emission consequently requires improving its reactivity.

제지 슬러지의 첨가가 요소수지 파티클보드의 포름알데히드 방산 및 물리적, 기계적 성질에 미치는 영향 (Effects of Paper Sludge Addition on Formaldehyde Emission, and Physical and Mechanical Properties of UF-Particleboard)

  • 김대준;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제22권1호
    • /
    • pp.44-53
    • /
    • 1994
  • This research was carried out to investigate the effect of paper sludge addition on formaldehyde emission, and physical and mechanical properties of UF-particleboard. In order to investigate the effect of paper sludge addition to resin, particleboards were bonded with urea-formaldehyde resins containing 5, 10, 15% paper sludge powders of three types(A Type: -200 mesh, B Type: -100~+200 mesh. C Type: -50~+100 mesh), based on weight of resin solid. Also the effect of paper sludge addition to furnish was studied from particleboards fabricated with ratios of sludge to particle of 5:95, 10:90, 15:85 based on oven-dry weight. Tests were conducted on the manufactured particleboards to determine formaldehyde emission, bending properties, internal bond strength and thickness swelling. The obtained results were summarized as follows: The addition of paper sludge powder to resin yielded a higher pH of cured resin. Formaldehyde emission decreased with the increase of paper sludge powder addition to resin and paper sludge composition ratio to furnish. Particleboard bonded with urea-formaldehyde resin containing paper sludge powder and particleboard mixed with paper sludge have similar bending properties(MOR, MOE) and thickness swelling compared with control particleboard. Internal bond strength of particleboards treated with paper sludge were lower than that of control particleboard. The use of paper sludge as scavenger was achieved reduction of formaldehyde emission without depression of physical and mechanical properties of particleboard. Also the use of paper sludge was able to concluded that there is possibility of partial substitution of wood particle materials.

  • PDF

Formaldehyde and TVOC Emission of Bio-Composites with Attached Fancy Veneer

  • Lee, Byoung-Ho;Kim, Hee-Soo;Kim, Ki-Wook;Lee, Se-Na;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권2호
    • /
    • pp.46-55
    • /
    • 2008
  • This study assesses the formaldehyde and TVOC emissions from bio-composites with attached fancy veneer manufactured using wood flour and polypropylene (PP) measured using the Field and Laboratory Emission Cell (FLEC) method and 20 L small chamber method. To determine and compare the effects of the adhesive, samples were prepared with different manufacturing methods. In the FLEC result, the formaldehyde emission level of the bio-composites with attached veneer by hot-press was the lowest than pure bio-composite and bio-composite attached veneer using adhesive. The TVOC emission levels are similar to the formaldehyde emission. The TVOC emission level is very low in all of the samples except fancy veneer that is attached with bio-composites using adhesive. The TVOC emission varies depending on how attaching fancy veneer. The results of the 20 L small chamber method were very similar to those obtained with the FLEC, but the correlation was not perfect. However, the FLEC method requires a shorter time than the 20 L small chamber method to measure the formaldehyde and TVOC emissions. The internal bonding strength exceeded the minimum value of $0.4N/mm^2$ specified by the KS standard. All of the bio-composites with attached veneer satisfied the KS standard.

Simultaneous Improvement of Formaldehyde Emission and Adhesion of Medium-Density Fiberboard Bonded with Low-Molar Ratio Urea-Formaldehyde Resins Modified with Nanoclay

  • WIBOWO, Eko Setio;LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권5호
    • /
    • pp.453-461
    • /
    • 2021
  • In wood-based composite panels, low-molar ratio (LMR) urea-formaldehyde (UF) resins usually result in reduced formaldehyde emission (FE) at the expense of poor adhesion. However, the FE and adhesion of medium-density fiberboard (MDF) bonded with LMR UF resins were both improved in this study. The modified LMR UF resins with transition metal ion-modified bentonite (TMI-BNT) nanoclay simultaneously improved the FE and adhesion of MDF panels. The modified LMR UF resins with 5% TMI-BNT resulted in a 37.1% FE reduction and 102.6% increase in the internal bonding (IB) strength of MDF panels. Furthermore, thickness swelling and water absorption also significantly decreased to 13.0% and 24.9%, respectively. These results imply that TMI-BNT modification of LMR UF resins could enhance the formation of a three-dimensional network rather than crystalline domains, resulting in improved cohesion.