• Title/Summary/Keyword: Formal validation method

Search Result 17, Processing Time 0.024 seconds

Formal Validation Method and Tools for French Computerized Railway Interlocking Systems

  • Antoni, Marc
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 2009
  • Checks and tests before putting safety facilities into service as well as the results of these tests are essential, time consuming and may show great variations between each other. Economic constraints and the increasing complexity associated with the development of computerized tools tend to limit the capacity of the classic approval process (manual or automatic). A reduction of the validation cover rate could result in practice. This is not compatible with the French national plan to renew the interlocking systems of the national network. The method and the tool presented in this paper makes it possible to formally validate new computerized systems or evolutions of existing French interlocking systems with real-time functional interpreted Petri nets. The aim of our project is to provide SNCF with a method for the formal validation of French interlocking systems. A formal proof method by assertion, which is applicable to industrial automation equipment such as interlocking systems, and which covers equally the specification and its real software implementation, is presented in this paper. With the proposed method we completely verify that the system follows all safety properties at all times and does not show superfluous conditions: it replaces all the indoor checks (not the outdoor checks). The advantages expected are a significant reduction of testing time and of the related costs, an increase of the test coverage rate, an answer to the new demand of railway infrastructure maintenance engineering to modify and validate computerized interlocking systems. Formal methods mastery by infrastructure engineers are surely a key to prove that more safety is not necessarily more expensive.

  • PDF

PLC Real Time OS Verification & Validation in Formal Methods (정형기법을 이용한 PLC RTOS 검증)

  • Choi, Chang-Ho;Song, Seung-Hwan;Yun, Dong-Hwa;Hwang, Sung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2489-2491
    • /
    • 2005
  • Currently, Programmable Logic Contorller(PLC) uses Real Time Operation System(RTOS) as basic OS. RTOS executes defined results as to defined time. General features of RTOS emphasize the priority in each task, high-speed process of external interrupt, task scheduling, synchronization in task, the limitation of memory capacity. For safety critical placement, PLC software needs Verification and Validation(V&V). For example, nuclear power plant. In this paper, PLC RTOS is verified by formal methods. Particularly, formal method V&V uses verification tool called 'STATEMATE', and shows the results.

  • PDF

An Algebraic Approach to Validation of Class Diagram with Constraints

  • Munakata, Kazuki;Futatsugi, Kokichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.920-923
    • /
    • 2002
  • In this paper, we propose Class Diagram With Constraints (CDWC) as an object oriented modeling technique which makes validation possible in software development. CDWC is a simple and basic model for the object oriented analysis, and has a reasonable strictness for software developers. CDWC consists of class diagrams and constraints (invariant and pre/post conditions), using UML and a subset of OCL.. We introduce a method of validation of CDWC using the verification technique of algebraic formal specification language CafeOBJ.

  • PDF

ForTIA : A Tool Supporting Formal Method based on LOTOS (ForTIA: LOTOS 기반의 정형기법 지원도구)

  • Cho, Soo-Sun;Cheon, Yoon-Sik;Oh, Young-Bae;Chung, Yun-Dae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.161-172
    • /
    • 2000
  • In this paper, we introduce the development of a LOTOS-based tool, supporting formal methods, called ForTIA (A Formalism for Telecommunication and Information Systems). By using LOTOS, an ISO standard formal specification language, the user requirements and system models can be abstracted and represented formally. Therefore, the system can be validated and verified on the specifications, before implementations. ForTIA supports light-weight formal methods based on validation to be used in real industry. Key functions of ForTIA are simulation and C++ code generation. In simulation, tree based visual validation mechanism is provided and in code generation, the full C++ source code is generated to be used for system implementations.

  • PDF

Algebraic Formal Specification and Formal Validation of the Standard and an Implementation of the OSPF Protocol (OSPF Protocol 표준 및 구현의 대수 정형적 명세 및 정형적 검증)

  • 박재현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.360-374
    • /
    • 2004
  • The OSPF protocol is the most widely used Interior Gateway Routing Protocol. Therefore, for the reliability of behavior of gigabit swiching routers, it is essential to guarantee the interoperability and the safety of the OSPF protocol. In this paper, we analyze the standard document of the OSPF protocol, so that we provide a formal specification that specifies the protocol behaviors by detailed design level using the algebraic formal method. By referring available source codes of the OSPF protocol, we supplement the formal specification to express more detailed behaviors that is not specified definitely in the standard. We also formally verify the interoperability and the safety of the protocol state machine of the specification. By showing that the formal specification specify all of the states and the transition events that appear in the standard document of the OSPF protocol, we prove that the state machine has the completeness, and prove it has the interoperability. To prove that the specification of the protocol has the safety, we formally verify the reachability, the liveness, the livelock-free property, and the deadlock-free property. As a result, we prove the protocol has the consistency. The specification and the validation are also effective to the OSPF Version 3 that inherit the protocol mechanism of the OSPF Version 2.

The Validation Study of Auto Anlysis Method Combined with Aqua Regia Digestion for Fluorine of Soil (왕수분해와 결합한 자동분석법의 토양 중 불소시험 유효성 연구)

  • Na, Kyung-Ho;Yun, In-Chul;Lee, Jung-Bok
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.5
    • /
    • pp.8-15
    • /
    • 2010
  • The purpose of this research is to check the validation of an auto-analysis method combined with aqua regia digestion apparatus for improvement of water distillation method used as a fluorine test of soil. Fluorine contents of CaO used in the pretreatment course of water distillation method were 120 mg/kg ~ 5,064 mg/kg at the blank test, which was exceeded up to maximum 12.5 times of the soil standard, so it was estimated due to a effect of fluorine existing as impurities of CaO. The recovery test of the same samples indicated that water distillation method and auto-analysis method were 134.5mg/kg and 161.7mg/kg respectively, the recovery ratio of the latter was 16.8% higher than the formal. The validation test of two methods satisfied the standard, but auto analysis method was excellent more than distillation method. Also, auto analysis method could save a analysis time up to maximum 4.7 times by comparison with water distillation method.

STATE TOKEN PETRI NET MODELING METHOD FOR FORMAL VERIFICATION OF COMPUTERIZED PROCEDURE INCLUDING OPERATOR'S INTERRUPTIONS OF PROCEDURE EXECUTION FLOW

  • Kim, Yun Goo;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.929-938
    • /
    • 2012
  • The Computerized Procedure System (CPS) is one of the primary operating support systems in the digital Main Control Room. The CPS displays procedure on the computer screen in the form of a flow chart, and displays plant operating information along with procedure instructions. It also supports operator decision making by providing a system decision. A procedure flow should be correct and reliable, as an error would lead to operator misjudgment and inadequate control. In this paper we present a modeling for the CPS that enables formal verification based on Petri nets. The proposed State Token Petri Nets (STPN) also support modeling of a procedure flow that has various interruptions by the operator, according to the plant condition. STPN modeling is compared with Coloured Petri net when they are applied to Emergency Operating Computerized Procedure. A converting program for Computerized Procedure (CP) to STPN has been also developed. The formal verification and validation methods of CP with STPN increase the safety of a nuclear power plant and provide digital quality assurance means that are needed when the role and function of the CPS is increasing.

A Formal Specification and Checking Technique of Feature model using Z language (휘처 모델의 Z 정형 명세와 검사 기법)

  • Song, Chee-Yang;Cho, Eun-Sook;Kim, Chul-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.123-136
    • /
    • 2013
  • The Feature model can not be guaranteed the syntactic accuracy of its model and be difficult the validation using automatic tool for its syntax, because this model is expressed by a graphical and informal structure in itself. Therefore, there is a need to formalize and check for the feature model, to precisely define syntax for construct of the model. This paper presents a Z formal specification and a model checking mechanism of the feature model to guarantee the correctness of the model. It first defines the translation rules between feature model and Z, and then converts the syntax of the feature model into the Z schema specification by applying these rules. Finally, the Z schema specification is checked syntax, type, and domain errors using the Z/Eves validation tool to assure the correctness of its specification, With the use of the proposed method, we may express more precisely the construct of the feature model. Moreover the domain analyst are able to usefully verify the errors of the generated feature model.

Mathematical Verification of a Nuclear Power Plant Protection System Function with Combined CPN and PVS

  • Koo, Seo-Ryong;Son, Han-Seong;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.157-171
    • /
    • 1999
  • In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for system modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, an information extractor from CPN models has been developed in this work. In order to convert the extracted information to the PVS specification language, a translator also has been developed. ML that is a higher-order functional language programs the information extractor and translator. This combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip). As a result of this application, we could prove completeness and consistency of the requirement logically. Through this work, in short, an axiom or lemma based-analysis method for CPN models is newly suggested in order to complement CPN analysis methods and a guideline for the use of formal methods is proposed in order to apply them to NPP Software Verification and Validation.

  • PDF

Verification, Validation, and Accreditation (VV&A) Considering Military and Defense Characteristics

  • Kim, Jung Hoon;Jeong, Seugmin;Oh, Sunkyung;Jang, Young Jae
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.88-93
    • /
    • 2015
  • In this paper, we identify the characteristics of modeling and simulation (M&S) for military and defense and propose the method of verification, validation, and accreditation (VV&A) using the identified characteristics. M&S has been widely used for many different applications in military and defense, including training, analysis, and acquisition. Various methods and processes of VV&A have been proposed by researchers and M&S practitioners to guarantee the correctness of M&S. The notion of applying formal credibility assessment in VV&A originated in software engineering reliability testing and the systems engineering development process. However, the VV&A techniques and processes proposed for M&S by the research community have not addressed the characteristics and issues specific to military and defense. We first identify the characteristics and issues of military/defense M&S and then propose techniques and methods for VV&A that are specific for military/defense M&S. Possible approaches for the development of VV&A are also proposed.