• Title/Summary/Keyword: Formal software requirements specification

Search Result 27, Processing Time 0.035 seconds

A Comparative Study of Formal Methods for Safety Critical Software in Nuclear Power Plant

  • Sedo Sohn;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.537-548
    • /
    • 2000
  • The requirement of ultra high reliability of the safety critical software can not be demonstrated by testing alone. The specification based on formal method is recommended for safety system software. But there exist various kinds of formal methods, and this variety of formal method is recognized as an obstacle to the wide use of formal method. In this paper six different formal method have been applied to the same part of the functional requirements that is calculation algorithm intensive. The specification results were compared against the criteria that is derived from the characteristics that good software requirements specifications should have and regulatory body recommends to have. The application experience shows that the critical characteristics should be defined first, then appropriate method has to be selected. In our case, the Software Cost Reduction method was recommended for internal condition or calculation algorithm checking, and statechart method is recommended for the external behavioral description.

  • PDF

Formal Software Requirements Specification for Digital Reactor Protection Systems (디지털 원자로 보호 시스템을 위한 정형 소프트웨어 요구사항 명세)

  • 유준범;차성덕;김창회;오윤주
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.750-759
    • /
    • 2004
  • The software of the nuclear power plant digital control system is a safety-critical system where many techniques must be applied to it in order to preserve safety in the whole system. Formal specifications especially allow the system to be clearly and completely specified in the early requirements specification phase therefore making it a trusted method for increasing safety. In this paper, we discuss the NuSCR, which is a qualified formal specification method for specifying nuclear power plant digital control system software requirements. To investigate the application of NuSCR, we introduce the experience of using NuSCR in formally specifying the plant protection system's software requirements, which is presently being developed at KNICS. Case study that shows that the formal specification approach NuSCR is very much qualified and specialized for the nuclear domain is also shown.

Analysis of the Formal Specification Application for Train Control Systems

  • Jo, Hyun-Jeong;Yoon, Yong-Ki;Hwang, Jong-Gyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.87-92
    • /
    • 2009
  • Many critical control systems are developed using formal methods. When software applied to such systems is developed, the employment of formal methods in the software requirements specification and verification will provide increased assurance for such applications. Earlier errors of overlooked requirement specification can be detected using the formal specification method. Also, the testing and full verification to examine all reachable states using model checking to undertake formal verification are able to be completed. In this paper, we proposed an eclectic approach to incorporate Z(Zed) formal language and 'Statemate MAGNUM', formal method tools using Statechart. Also we applied the proposed method to train control systems for the formal requirement specification and analyzed the specification results.

Formal Verification of Functional Properties of an SCR-style Software Requirements Specifications using PVS (PVS를 이용한 SCR 스타일의 소프트웨어 요구사항 명세에서 기능 요구 사항의 정형 검증)

  • Kim, Tae-Ho;Cha, Sung-Deok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.46-61
    • /
    • 2002
  • Among the many phases involved in software development, requirements analysis phase in generally considered to play a crucial role in determining the overall software quality. Therefore, many software development companies manages the phase as one of the important phase. Especially, safety assurance through requirements analysis for safety-critical systems is quite demanding, and national and international bodies routinely require safety demonstration. Among various approaches, inspection and formal methods are generally shown to be effective. In this paper, we propose a formal verification procedure for SCR(Software Cost Reduction)-style SRS(Software Requirements Specification) using the PVS specification and verification procedure and applied this procedure to an industrial system such that a shutdown system for Wolsung nuclear power plant. This system had been verified through inspection not formal verification. The application of formal methods is rare in Korea, so it is very important to experiment about formal verification to industrial systems.

Systematic Generation of PLC-based Design from Formal Software Requirements (정형 소프트웨어 요구사항으로부터 PLC 디자인의 체계적 생성)

  • Yoo Junbeom;Cha Sungdeok;Kim Chang Hui;Song Deokyong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.108-118
    • /
    • 2005
  • The software of the nuclear power plant digital control system is a safety-critical system where many techniques must be applied to it in order to preserve safety in the whole system. Formal specifications especially allow the system to be clearly and completely specified in the early requirements specification phase, therefore making it a trusted method for increasing safety. In this paper, we discuss a systematic method, which generates PLC-based FBD programs from the requirements specification using NuSCR, a formal requirements specification method. This FBD programs takes an important position in design specification. The proposed method can reduce the possible errors occur in the manual design specification, and the software development cost and time. To investigate the usefulness of our proposed method, we introduce the fixed set-point rising trip example, a trip logic of BP in DPPS RPS, which is presently being developed at KNICS.

A Qualitative Formal Method for Requirements Specification and Safety Analysis of Hybrid Real-Time Systems (복합 실시간 계통의 요구사항 명세와 안전성 분석을 위한 정성적 정형기법)

  • Lee, Jang-Soo;Cha, Sung-Deok
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.120-133
    • /
    • 2000
  • Major obstruction of using formal methods for hybrid real-time systems in industry is the difficulty that engineers have in understanding and applying the quantitative methods in an abstract requirements phase. While formal methods technology in safety-critical systems can help increase confidence of software, difficulty and complexity in using them can cause another hazard. In order to overcome this obstruction, we propose a framework for qualitative requirements engineering of the hybrid real-time systems. It consists of a qualitative method for requirements specification, called QFM (Qualitative Formal Method), and a safety analysis method for the requirements based on a causality information, called CRSA (Causal Requirements Safety Analysis). QFM emphasizes the idea of a causal and qualitative reasoning in formal methods to reduce the cognitive burden of designers when specifying and validating the software requirements of hybrid safety systems. CRSA can evaluate the logical contribution of the software elements to the physical hazard of systems by utilizing the causality information that is kept during specification by QFM. Using the Shutdown System 2 of Wolsong nuclear power plants as a realistic example, we demonstrate the effectiveness of our approach.

  • PDF

The Analysis of Formal Methods for Applying to Vital S/W in Train Control Systems (열차제어시스템 바이탈 소프트웨어를 위한 정형기법 적용 방안 분석)

  • Jo, Hyun-Jeong;Hwang, Jong-Gyu;Yoon, Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1000-1007
    • /
    • 2007
  • Recently, many critical control systems are developed using formal methods. When software applied to such systems is developed, the employment of formal methods in the software requirements specification and verification will provide increased assurance for such applications. Earlier error of overlooked requirement specification can be detected using formal specification method. Also the testing and full verification to examine all reachable states using model checking to undertake formal verification are able to be completed. In the comparison of other formal specification methods, we choose the Z formal language for applying to the train control system. Using Z is able to realize higher correctness in the requirement specification, and we propose the Statemate of the best solution in formal verification tools for the system modeling and verification. The Statemate makes it possible to prove thoroughly the system execution from the simple graphical modeling of the complicated train control system. Then we can expect that the model-based formal method combining Z with Statemate will be utilized widely for the railway systems due to various strong points.

  • PDF

A Technique to Specify and Analyze Reactive and Real-Time Software (반응형 실시간 소프트웨어를 명세하고 분석하기 위한 기법)

  • Younju Oh;Jaemyoung Cho;Junbeom Yoo;Sungdeok Cha
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.19-21
    • /
    • 2002
  • Writing requirements in formal notation for a safety-critical system can improve software quality and reduce the errors that may arise later on in the software development life cycle. In this paper, we propose a formal specification approach used to describe the nuclear control system. The approach is based on the existing AECL approach that was the only formal specification technique applied to nuclear control systems in the past. Although the approach is AECL-based, the complex descriptions of certain requirements have been reduced by using different specification techniques. We discuss the differences and how the proposed approach provides not only specification but also verification environment.

  • PDF

Development of the Formal Requirements Specification of the Safety-critical Railway Systems (안전 필수 철도 시스템 개발을 위한 요구 사항의 정형 명세 작성)

  • Lee, Jean-Ho;Hwang, Dae-Yon;Kim, Jin-Hyun;Park, Jun-Kil;Choi, Jin-Young;Hwang, Jong-Gyu;Yoon, Yong-Ki;Jo, Hyun-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.731-740
    • /
    • 2008
  • A railway control system is one of the typical safety-critical systems. It is required to use formal methods for the requirements specification and verification in order to develop the global-standard railway control systems based on the computer systems. In this paper, we develop a guideline for requirements specification using formal methods, and present a case study of the development of a computer-based railway control system through the application of the proposed guideline. We use the Statechart and the Z method for the formal requirements specifications and verify the consistency and completeness of the formal specifications of the requirements.

A formal approach to support the identification of unsafe control actions of STPA for nuclear protection systems

  • Jung, Sejin;Heo, Yoona;Yoo, Junbeom
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1635-1643
    • /
    • 2022
  • STPA (System-Theoretic Process Analysis) is a widely used safety analysis technique to identify UCAs (Unsafe Control Actions) resulting in potential losses. It is totally dependent on the experience and ability of analysts to construct an information model called Control Structures, upon which analysts try to identify unsafe controls between system components. This paper proposes a formal approach to support the manual identification of UCAs, effectively and systematically. It allows analysts to mechanically extract Process Model, an important element that makes up the Control Structures, from a formal requirements specification for a software controller. It then concisely constructs the contents of Context Tables, from which analysts can identify all relevant UCAs effectively, using a software fault tree analysis technique. The case study with a preliminary version of a Korean nuclear reactor protections system shows the proposed approach's effectiveness and applicability.