• Title/Summary/Keyword: Form of current

Search Result 2,609, Processing Time 0.036 seconds

3D Optimal Design of Transformer Tank Shields using Design Sensitivity Analysis

  • Yingying Yao;Ryu, Jae-Seop;Koh, Chang-Seop;Dexin Xie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.23-31
    • /
    • 2003
  • A novel 3D shape optimization algorithm is presented for electromagnetic devices carry-ing eddy current. The algorithm integrates the 3D finite element performance analysis and the steepest descent method with design sensitivity and mesh relocation method. For the design sensitivity formula, the adjoint variable vector is defined in complex form based on the 3D finite element method for eddy current problems. A new 3D mesh relocation method is also proposed using the deformation theory of the elastic body under stress to renew the mesh as the shape changes. The design sensitivity f3r the sur-face nodal points is also systematically converted into that for the design variables for the parameterized optimization application. The proposed algorithm is applied to the optimum design of the tank shield model of the transformer and the effectiveness is proved.

Experimental Study of DC Coronas in Point-to-Plane Short Gap (지간적 직류Corona의 실질적 검토)

  • 오철한;이성만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.5
    • /
    • pp.157-163
    • /
    • 1983
  • Positive and negative coronas in point-to-plane short gap have been investigated with the variations of point radius and gap length. Mainly the onset potentials and current pulses under various conditions were measured with a 70 MHz C.R.O. and a precise-controllable D.C. power supply. In the case of negative corona, the Trichel pulse corona, glow corona and spark regions were distinguished apparently and the critical gap lengths between them were also found clearly. In the case of positive corona, there are streamer corona, spark regions and the critical gap length between them, too. The current pulse forms of Trichel pulse corona of negative and streamer pulse corona of positive are similar in rising time, peak-to-peak time and pulse width. The glow corona current shows D.C. component in form.

  • PDF

CFD Simulation Tool for Anode-Supported Flat-Tube Solid Oxide Fuel Cell

  • Youssef M. Elsayed.;Lim, Tak-Hyoung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.4
    • /
    • pp.151-157
    • /
    • 2006
  • A two-dimensional numerical model to study the performance of anode-supported flat-tube solid oxide fuel cell (SOFC) far the cross section of the cell in the flow direction of the fuel and air flows is developed. In this model a mass and charge balance, Maxwell-Stefan equation as well as the momentum equation by using, Darcy's law are applied in differential form. The finite element method using FEMLAB commercial software is used for meshing, discritization and solving the system of coupled differential equations. The current density distribution and fuel consumption as well as water production are analyzed. Experimental data is used to verify a predicted voltage-current density and power density versus current density to judge on the model accuracy.

A New Accurate Equation for Estimating the Baseline for the Reversal Peak of a Cyclic Voltammogram

  • Oh, Sung-Hoon;Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.293-297
    • /
    • 2016
  • Here we propose a new equation by which we can estimate the baseline for measuring the peak current of the reverse curve in a cyclic voltammogram. A similar equation already exists, but it is a linear algebraic equation that over-simplifies the voltammetric curve and may cause unpredictable errors when calculating the baseline. In our study, we find a quadratic algebraic equation that acceptably reflects the complexity included in a voltammetric curve. The equation is obtained from a laborious numerical analysis of cyclic voltammetry simulations using the finite element method, and not from the closed form of the mathematical equation. This equation is utilized to provide a virtual baseline current for the reverse peak current. We compare the results obtained using the old linear and new quadratic equations with the theoretical values in terms of errors to ascertain the degree to which accuracy is improved by the new equation. Finally, the equations are applied to practical cyclic voltammograms of ferricyanide in order to confirm the improved accuracy.

Analysis of Metal Transfer using Dynamic Force Balance Model in GMAW (동적 힘 평형 모델을 이용한 GMA 용접의 용적이행 해석)

  • 최재형;이지혜;유중돈
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.399-405
    • /
    • 2001
  • A dynamic force balance model is proposed in this work as an extension of the previous static force balance model to predict metal transfer in arc welding. Dynamics of a pendant drop is modeled as the second order system, which consists of the mass, spring and damper. The spring constant of a spherical drop at equilibrium is derived in the closed-form equation, and the inertia force caused by drop vibration is included in the drop detaching condition. While the inertia force is small in the low current range, it becomes larger than the gravitational force with current increase. The inertia force reaches half of the electromagnetic force at transition current, and has considerable effects on drop detachment. The proposed dynamic force balance model predicts the detaching drop size more accurately than the static force balance model.

  • PDF

Electric Properties of NTC Thermistor for Current Limited (전류제한용 NTC 써미스타의 전기적 특성)

  • Yoon, J.R.;Kim, J.G.;Lee, H.Y.;Lee, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1674-1676
    • /
    • 1999
  • Oxide of the form $Mn_3O_4-CuO-Co_3O_4$-NiO-ZnO present properties that make them useful as power NTC thermistor for current limited. Power NTC thermistor electric properties of $Mn_3O_4-CuO-Co_3O_4$-NiO-ZnO system has been measured as a function of temperature and composition and current - voltage, time constant, activation energy, heat dissipation coefficient have also been determined.

  • PDF

Cutting force estimation using spindle and feeddrive motor currents in milling processes (밀링공정에서 이송모터와 주축모터의 전류신호를 이용한 절삭력 추정)

  • 김승철;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1407-1410
    • /
    • 1997
  • Advanced sensor design and filtering technology have been studied to obtain information for condition monitoring and diagnostics inmachining processes. To develope and economic monitoring system in end milling processes, indirect and reliable type of cutting force estimators were required. In this paper, an estimation method of cutting forces during end milling processes was studied through the measurement of current signals obtained from spindle and feeddrive motors. Cutting force and torque models were derived from the cutting geometry in down milling processes. Relationships between motor currents and cutting forces were also developed in the form of AC and DC components from the developed force models. The validity of the cutting force estimator was confirmed by the experiments under various cutting conditions.

  • PDF

Internal Model Control of UPS Inverter using Resonance Model

  • Park J. H.;Kim D. W.;Kim J. K.;Lee H. W.;Noh T. K.;Woo J. I.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.184-188
    • /
    • 2001
  • In this paper, a new fully digital control method for single-phase UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. The inner current control loop is designed and implemented in the form of internal model control and takes the presence of computational time-delay into account. Therefore, this method provides an overshoot-free reference-to-output response. In the proposed scheme, the outer voltage control loop employing P controller with resonance model implemented by a DSP is introduced. The proposed resonance model has an infinite gain at resonant frequency, and it exhibits a function similar to an integrator for AC component. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been demonstrated by the simulation and experimental results respectively.

  • PDF

Design and Characteristic Experiment of Eddy Current Coupling (와전류 커플링의 특성 실험 및 설계)

  • Jang, Seok-Myeong;Cho, Seong-Kook;Lee, Sung-Ho;Ji, Seung-Kun;Ryu, Ki-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.110-112
    • /
    • 2003
  • Electric control of eddy coupling offers many new possibilities in process control and other industrial control applications. And a form of speed control for the load is affected for a system driven by costant frequency induction motor. This paper analysis speed-torque characteristic of the eddy-current coupling by using the 3-dimensional analytical method. Characteristic experiment is put into operation for the claw pole type eddy current coupling. Design procedure is presented based on the analysis.

  • PDF

Electronic Document Automation System Model for Improving Productivity in maintenance work - in Inspection Process of Construction Equipment Maintenance - (정비작업의 생산성 향상을 위한 전자문서자동화시스템 모형 - 건설장비 정비작업을 중심으로 -)

  • Kong, Myung-Dal
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.49-58
    • /
    • 2017
  • This paper suggests a specific model that could efficiently improve the interaction and the interface between MES(Manufacturing Execution System) server and POP(Point of Production) terminal through electronic document server and electronic pen, bluetooth receiver and form paper in disassembly and process inspection works. The proposed model shows that the new method by electronic document automation system can more efficiently perform to reduce processing time for maintenance work, compared with the current approach by handwritten processing system. It is noted in case of the method by electronic document automation system that the effects of proposed model are as follows; (a) While the processing time per equipment for maintenance by the current method was 300 minutes, the processing time by the new method was 50 minutes. (b) While the processing error ratio by the current method was 20%, the error ratio by the new method was 1%.