• Title/Summary/Keyword: Form error

Search Result 1,259, Processing Time 0.031 seconds

Observer for Nonlinear Systems Using Approximate Observer Form (근사 관측기 형태를 이용한 비선형 시스템의 관측기)

  • 이성렬;신현석;박민용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.207-207
    • /
    • 2000
  • This paper presents an observer for nonlinear systems using approximate observer form. It is shown that if a nonlinear system is approximately error linearizable, then there exists a local nonlinear observer whose estimation error converges exponentially to zero. Since the proposed method relaxes strong geometric conditions of previous works, it improves the existing results for a nonlinear observer design. Finally, some examples are given to show the effectiveness of this scheme.

  • PDF

Variations of Form Accuracy in the Process of Metal Cast Prototyping using Rapid prototype, Vacuum casting and Ceramic Mold (쾌속조형과 진공주형 및 세라믹 몰드를 이용한 금속 주조 시제품 제작 공정에서의 형상정밀도 변화)

  • Kim, Gi-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.131-137
    • /
    • 2007
  • In metal casting process, it is very difficult to predict the form accuracy of cast part and reduce repeatability error. In this study, the variations of form accuracy were measured in the process of metal cast prototyping, where RP part is manufactured from CAD model in the first, and then, wax part is cast in the vacuum environment using the RP part as master model, and finally metal prototype is cast using ceramic mold and the wax part as pattern. To investigate the variations of form accuracy, the averages and standard deviations of error distribution of the parts measured by 3D scanner were compared. It was observed that the biggest shrinkage is generated during the extraction of wax part in the second step and the biggest deterioration of form accuracy is generated during the metal part casting in the last step.

Modeling and Measurement of Geometric Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 기하오차 모델링 및 오차측정)

  • Lee, Jae-Jong;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.201-210
    • /
    • 1999
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric and thermal errors of the machine tools. Therefore, a key requirement for improving te machining accuracy and product quality is to reduce the geometric and thermal errors of machine tools. This study models geometric error for error analysis and develops on-machine measurement system by which the volumetric erors are measured. The geometric error is modeled using form shaping function(FSF) which is defined as the mathematical relationship between form shaping motion of machine tool and machined surface. The constant terms included in the error model are found from the measurement results of on-machine measurement system. The developed on-machine measurement system consists of the spherical ball artifact (SBA), the touch probe unit with a star type stylus, the thermal data logger and the personal computer. Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of ${\pm}2{\mu}m$ in X, Y and Z directions.

  • PDF

Studies on Error Propagation by Simulation Model -Main description of experments of aero-triangulation- (횡응모형에 의한 오차전파에 관한 연구 -공중삼각측량의 실험을 중심으로-)

  • 백은기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.1
    • /
    • pp.4021-4037
    • /
    • 1976
  • This paper describes the actual experiments of the error propagation and studies of analytical photogrammetry using the simulation method in which we can find the causes of the errors. These studies and the results give the valuable data which are very effective for systematically controlling the errors in aerial triangulation. The main contents in my paper are as follows: 1. Dose the scale errors in the successive models in the form of normal distribution appear when the observation errors propagate in the form of normal distribution\ulcorner 2. In what form does this scale error propagation in the actual model appear\ulcorner 3. When the causes of the scale error propagation are found, is the evaluation standard determined normally\ulcorner 4. What degree of influence is there form the constant errors\ulcorner I have done several experiments using the simulation method technique to solve the complicated error propgation of aerial triangulation which is the effective means to research the relations between cause and effect. In this paper, the studies have concentrated on the following points of simulation experiments. (1) The first part descries how we can produce the soft program of the simulation experiment. (2) The second part is the method propagating the errors in the simulation models and the kinds of errors. (3) The final part is the most important; that is the analyzing and evaluation of control during actual work. From the above-mentioned points, it is said that these studies are a very important development in the field of controlling and managing aerial photogrammetry and especially in the case of error propagation, we can clearly find the causes of the errors and steps and parts of errors generated when we use these techniques.

  • PDF

Performance Analysis of Dual-Hop MBST-ADF Relay Networks Over Quasi-Static Rayleigh Fading Channels

  • Kim, Min-Chan;Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.18-27
    • /
    • 2018
  • The objective of this study was to derive approximate closed-form error rates for M-ary burst symbol transmission (MBST) of dual-hop adaptive decode-and-forward (ADF) cooperative relay systems over quasi-static Rayleigh fading channels. Within a burst, there are pilot symbols and data symbols. Pilot symbols are used for channel estimation schemes and each relay node's transmission mode selection schemes. At first, our focus was on ADF relay systems' error-events at relay nodes. Each event's occurrence probability and probability density function (PDF) were then derived. With error-event based approach, we derived a tractable form of PDF for combined signal-to-noise ratio (SNR). Averaged error rates were then derived as approximate expressions for arbitrary link SNR with different modulation orders and numbers of relays. Its accuracy was verified by comparison with simulation results.

Design of Contour Error Models using Contour Error Vector (윤곽오차 벡터를 이용한 윤곽오차 모델 설계)

  • 최정희;이명훈;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.895-898
    • /
    • 2003
  • The higher precision is demanded in modem manufacturing and it requires the more accurate servo controller. Cross-coupling control (CCC) has been developed to improve contouring motion. In this paper we introduce a new nonlinear CCC that is based on contour-error-vector using a parametric curve interpolator. A vector from the actual tool position to the nearest point on the desire path is directly adopted. The contour-error-vector is determined by constructing a tangential vector of nearest point on desired curve and determining the vector perpendicular to this tangential vector from the actual tool position. Moreover, the vector CCC can apply directly and easily to free-form curves include convex and concave form. The experimental results on a three-axis CNC machine center show that the present approach significantly improves motion accuracy in multi-axis motion

  • PDF

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.

A Study on PC-NC Based Aspherical Lens Polishing System with Minimum Translation Mechanism (최소 이송 기구를 갖는 PC-NC 기반의 비구면 렌즈 연마 장치에 관한 연구)

  • Yang, Min-Yang;Lee, Ho-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.65-71
    • /
    • 2001
  • The development process of the polishing system for the aspherical lens mold for opto-electronics industry is described. The system uses the method that polishing tool is scanned on the surface under PC-NC control for the aspherical lens mold. The two axes interpolation of the minimum translation mechanism is applied to give uniform working condition by motion analysis. An aspherical surface is divided into multiple sections and each dwell time is calculated from the polishing rate model based on the Preston equation. As result of form error compensation experiment, initial form error is decreased about 25% while an average value of surface roughness is also reduced successfully from 180nm to 19nm.

  • PDF

Estimation Method of the Best-Approximated Form Factor Using the Profile Measurement of the Aspherical Ophthalmic Lens (단면 형상 측정을 이용한 비구면 안경 렌즈의 최적 근사화된 설계 계수의 추정 방법)

  • Lee Hocheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.55-62
    • /
    • 2005
  • This paper presents mainly a procedure to get the mathematical form of the manufactured aspherical lens. Generally Schulz formula describes the aspherical lens profile. Therefore, the base curvature, conic constant. and high-order polynomial coefficient should be set to get the approximated design equation. To find the best-approximated aspherical form, lens profile is measured by a commercial stylus profiler, which has a sub-micrometer measurement resolution. The optimization tool is based on the minimization of the root mean square of error sum to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the lens refractive power measurement shows the experimental consistency with the curvature distribution of the best-approximated aspherical surface equation

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.