• Title/Summary/Keyword: Form Accuracy (PV)

Search Result 20, Processing Time 0.029 seconds

A Study on Molding Condition of Aspheric Glass Lenses for Mobile Phone Module Using Design of Experiments ; Pressing Condition (DOE를 적용한 카메라폰 모듈용 비구면 Glass렌즈의 성형조건 연구 ; 가압조건)

  • Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.57-57
    • /
    • 2007
  • Aspheric glass lenses have many optical advantages, for glass have superior optical performance and an aspheric form can reduce optical aberrations. Recently, the use of it is rapidly expanding as the mass production becomes possible by glass molding press and so this method is considered as the best method for fabricating an aspheric glass lens, but it is difficult to control many parameters for pressing and cooling process. Design of experiments (DOE) is a very useful tool to design and analyze complicated industrial design problems. This study investigated the pressing conditions to mold aspheric glass lenses for mega pixel phone camera module using DOE method. We have applied fractional factorial design and the response variable was set form accuracy (PV) of aspheric surface of molded lens. The results of analysis indicates that all factors expect for pressing force of each step are available for the form accuracy (PV). It was the optimum condition of the designed pressing conditions for lowering the form accuracy(PV) value of molded lens that all factors were at the low level. The form accuracy (PV) of mold and molded lens under the optimum condition are $0.85\;{\mu}m$ and $0.922\;{\mu}m$ respectively.

  • PDF

A Study on Pressing Conditions in the molding of Aspheric Glass Lenses for Phone Camera Module using Design of Experiments (DOE를 적용한 카메라폰 모듈용 비구면 Glass 렌즈의 가압성형조건 연구)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • This study investigated the pressing conditions in the molding of aspheric glass lenses for the mega pixel phone camera module using the DOE method. Tungsten carbide (WC; Japan, Everloy Co., 002K),which contained 0.5 w% cobalt (Co), was used to build the mold. The mold surface was ultra-precision ground and polished, and its form accuracy (PV) was 0.85um in aspheric surface. We selected four factors, pressing temperature, force and time of first step, and force of second step, respectively, as the parameters of the pressing process. in order to reduce the number of experiments, we applied fractional factorial design considering the main effects and two-way interactions. The analysis results indicate that the only two main effects, the pressing temperature and the time of pressing step 1, are available for the form accuracy (PV) of the molded lens. The analysis results indicated that the best combination of the factors for lowering the form accuracy(PV) value of molded lens was to have them at their low levels.

Molding and Optical Evaluation of Aspheric Glass Lenses for Camera Phone Module (카메라폰 모듈용 비구면 Glass렌즈의 성형 및 광학특성 평가)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Kim, Jeong-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.3
    • /
    • pp.124-131
    • /
    • 2007
  • Aspheric glass lenses was fabricated by glass molding press(GMP), which is a plano-aspheric convox shape and intended for use as an optical design of 3 megapixel and 2.5 magnifications zoom in a camera phone module. Transcription ratio of form accuracy (PV) as well as resolution properties was measured for evaluation the molded lens. Form accuracy (PV) of the mold surface was $0.127\;{\mu}m$ in an aspheric and $0.168\;{\mu}m$ in a plano, in case of the molded lens it shows $0.205\;{\mu}m$ and $0.223\;{\mu}m$, respectively. Resolution of the molded lens was measured as a MTF[Contrast]. The molded lens shows contrast of 32.9% at 80 1p/mm and the value is similar with contrast of 33% obtained simulation.

  • PDF

Ultra-precision Grinding Optimization of Mold Core for Aspheric Glass Lenses using DOE and Compensation Machining (실험계획법과 보정가공을 이용한 비구면 유리렌즈 성형용 코어의 초정밀 연삭가공 최적화)

  • Kim, Sang-Suk;Lee, Yong-Chul;Lee, Dong-Gil;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.45-50
    • /
    • 2007
  • The aspheric lens has become the most popular optical component used in various optical devices such as digital cameras, pick-up lenses, printers, copiers etc. Using aspheric lenses not only miniaturizes and reduces the weight of products, but also lower prices and higher field angles can be realized. Additionally, plastic lenses are being changed to glass lenses more recently because of low accuracy, low acid-resistance and low thermal-resistance in the plastic lenses. Currently, one fabrication method of glass lenses is using a glass-mold method with a high precision mold core for mass production. In this paper, DOE (Design Of Experiments) and compensation machining were adopted to improve the surface roughness and the form accuracy of the mold core. The DOE has been done in order to discover the optimal grinding conditions which minimize the surface roughness with factors such as work spindle revolution, turbine spindle revolution, federate and cutting depth. And the compensation machining is used to generate high form accuracy of the mold core. From various experiments and analyses, we could obtain the best surface roughness 5 nm in Ra, form accuracy $0.167\;{\mu}m$ in PV.

Ultra Precision Machining of Optical Pick-up Aspheric Glass Objective Lens Molding Press Core for Optical Information Storing (I) (광정보저장용 광픽업 대물렌즈 성형용 코어 초정밀 형상가공 (I))

  • Kim, Min-Jae;Lee, Jun-Key;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.290-290
    • /
    • 2009
  • Blu-ray Disk, the next generation optical information storing equipment used Blu-ray is the next generation leading storing equipment that has capacity is about from six times to thirty-five times bigger than the existing CDs, DVDs. Especially, we need elaborate optical pick-Up equipment to record and recognize detailed date. Moreover, Blu-ray disk has so narrow track-pitch so it is used high NA(Numerical Aperture) aspheric glass objective lens. In this research, we processed optical pick-up aspheric glass objective lens molding press core by parallel grinding method with ultra precision machining and mold core surface measured form accuracy(PV), surface roughness(Ra).

  • PDF

A Study on the Characteristics of Zerodur Grinding using Ultra-Precision Machine (초정밀가공기를 이용한 Zerodur의 연삭 특성에 관한 연구)

  • 김주환;김건희;한정열;김석환;원종호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.405-409
    • /
    • 2003
  • We explored a new rough grinding technique on optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and range of diamond resin bond wheel. The grinding parameters such as workpiece rotation speed depth of cut and feed rate were altered while grinding the workpiece surfaces of 20m in diameter. Surface roughness is measured by Form Talysurf series2. Our target is to define grinding conditions producing the surface roughness better than 0.02${\mu}{\textrm}{m}$ Ra and the form accuracy of around 0.2${\mu}{\textrm}{m}$ PV.

  • PDF

A study on the ultra precision machining of free-form molds for advanced head-up display device (첨단 헤드업 디스플레이 장치용 비구면 자유형상 금형의 초정밀 가공에 관한 연구)

  • Park, Young-Durk;Jang, Taesuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.290-296
    • /
    • 2019
  • Head-up displays for vehicles play an important role in displaying various information about the safety and convenience of driving on the windshield of the vehicle. In this study, ultra-precision machining was performed and evaluated as a method for machining a large-area aspheric free-form mirror that is applicable to augmented reality technology. Precision diamond cutting is highly accurate and suitable for the production of advanced parts with excellent surface integrity, low surface roughness, and low residual stress. By using an aspheric free-form mold, it is possible to improve the optical transfer function, reduce the distortion path, and realize a special image field curvature. To make such a mold, the diamond cutting method was used, and the result was evaluated using an aspherical shape-measuring machine. As a result, it was possible to the mold with shape accuracy (PV) below $1{\mu}m$ and surface roughness (Ra) below $0.02{\mu}m$.

A Study on the Optimal Molding Conditions for Aspheric Glass Lenses in Progressive GMP (순차이송형 유리렌즈 성형공정에서 비구면 유리렌즈의 최적 성형조건 연구)

  • Jung, Tae-Sung;Park, Kyu-Sup;Yoon, Gil-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1051-1057
    • /
    • 2011
  • By the recently developed GMP(Glass Molding Press) process, aspheric glass lenses are widely used in many optical applications such as digital cameras, optical data storages and electrical devices etc. The GMP process can economically produce complex shaped glass lenses with high precision and good repeatability. This study deals the optimization of molding conditions for aspheric glass lenses in progressive GMP process through Design Of Experiment(Taguchi method). Tree main factors for molding conditions were selected based on pressure, temperature and cooling time at 1st cooling stage. From the analysis of experiments which were preformed with 3-cavity glass mold, it was revealed that the cooling time was the most sensitive parameter for form accuracy(PV) in progressive GMP process.

Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module (휴대폰 카메라용 비구면 Glass 렌즈 전사특성 분석)

  • Cha, D.H.;Lee, J.K.;Kim, M.J.;Lee, D.K.;Kim, H.J.;Kim, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.363-366
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained by comparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF

Transcription Characteristics in the Molding of Aspheric Glass Lenses for Camera Phone Module (휴대폰 카메라용 비구면 Glass렌즈 전사특성 분석)

  • Cha, Du-Hwan;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.336-336
    • /
    • 2008
  • The transcription characteristics in the molding of aspheric glass lenses for camera phone modules have been investigated experimentally. The surface topographies of both the form and the roughness were compared between the mold and the molded lens. The molded lens showed a transcription ratio of 93.4%, which is obtained bycomparing the form accuracy (PV) values of the mold and the molded lens. The transcription of the roughness topography was ascertained by bearing ratio analysis.

  • PDF