• Title/Summary/Keyword: Forging of Spur Gear

Search Result 37, Processing Time 0.024 seconds

A Study on the Forging of Spur Gears with Hollow Billets (중공소재를 사용한 스퍼어기어 단조에 관한 연구)

  • 조해용;최재찬;최종웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.183-186
    • /
    • 1995
  • A simulation method basee on upper bound method is developed in order to characterize forging characters in forging of spur gears. In this paer, utlizing a kinematically admissible velocity field and applying it to study the effect of inner diameter of holow billet. To predict the variation of inner diameter of hollow billet, neutal surface has been introduced into forging of hollow gears from hollow billes with flat punch. The neutral surface of each step is assumed as a circle and determined in order to have minimum forging energy by golden section method. According to the analysis, the magnitude of inner diameter of initial billet is vary important to reduce the relative pressure and forging load. And the variation of inner diameter of billet during spur gear forging is successfully predicted.

  • PDF

A Study on the Cold Forging Process of Spur Gears (스퍼어 기어의 냉간 단조 공정에 관한 연구)

  • Park, J.C.;Park, Y.;Kim, K.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.105-113
    • /
    • 1997
  • In this study, the forging process of spur gears has been investigated. The forging process of spur gears has been classified into two type of operations, guiding one and clamping one in this investigation. Two type forgings of spur gears have been analysed by using upper bound method. The predicted values of the forging load were compared with those obtained from the forging experiments. The forging experiments were carried out with a commercial aluminium alloy. The forged parts obtained through the guiding type forging were campared with those obtained through the clamping type forging.

  • PDF

A Study on the Forging Processes of Spur Gears (스퍼어기어의 단조 공정에 관한 연구)

  • Choi, J. C.;Choi, Y.;Kim, K. K.;tak, S. J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1015-1019
    • /
    • 1997
  • In this study, the forging process of spur gears has been investigated. The forging peocess of spur gears has been classified into two type of operations, guiding one and clamping one in this investigation. Two type forgings of spur gears have been analysed by using upper bound method. The predicted values of the forging load were compared with those obtained from the forging experiments. The forging experiments were carried out with a commerial aluminium alloy. The forged parts obtained through the guiding type forging were campared with those obtained through the clamping type forging.

  • PDF

Forming Analysis and Design of Cold Gear Forging using 3D Finite Element Method (3차원 유한요소법을 적용한 냉간단조 기어 성형 해석 및 설계)

  • 송종호;김수영;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.108-111
    • /
    • 2002
  • It is important to predict forming procedure for minimizing trial-and-error in the application of cold forging of gears. In this study, 3-dimensional simulations of cold forging processes of spur and bevel gear were carried out using finite element method to investigate the characteristics of the processes. From the simulation result it was found that incomplete teeth forming of spur gear was occurred with increase of teeth number in forging by forward extrusion. It can be reduced through division of material flows at the initial forming state using forward/backward combined extrusion.

  • PDF

A Study on the Forging of Internal Involute Gears with Alloy Steel (합금강을 이용한 내접 인벌류우트 기어의 단조에 관한 연구)

  • 최종웅;조해용;최재찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.90-98
    • /
    • 1998
  • Forging of internal involute gears with alloy steel has been analyzed by means of upper bound method. Kinematically admissible velocity fields for forging of internal gear were proposed. It was assumed that the shape of free flow surface during forging operation is a straight line perpendicular to the plane of symmetry. Using the suggested velocity fields, forging loads and relative pressures were calculated by numerical method. Consequently forging die should be successfully designed without fracture or failure during forging operation. Experiments were carried out with the designed die and SCM415 alloy steel as billet material. The calculated loads were compared with experimental one and they are in good agreement with experimental inspections. As a result, the calculated solutions would be useful to predict the loads and the designed die is suitable for forging of internal involute spur gear with alloy steel. The forged gear is measured to be KS 4 class and its class should be improved by subsequent working such as shaving after forging operation.

  • PDF

A Study on the Forging of Spur Gears with Internal Serrations (내부세레이션홈을 갖는 스퍼어 기어의 단조에 관한 연구)

  • 최종웅;조해용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.81-89
    • /
    • 1998
  • Numerical calculation tools for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear. square spline, internal serrations. A complex calculation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper the workpiece with 110th external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool from combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with others and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

Upper Bound Analysis on the Forging of Gear-Like Components (기어류 부품의 단조에 관한 상계해석)

  • Min, G.S.;Park, J.U.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.102-112
    • /
    • 1997
  • This paper describes the method that can construct kinematically admissible velocity fields for forging of gear-like components which have tooth shape around the cylinder. The kinematically admissible velo- city fields for the various gear-like components, involute spur gear, trapezoidal spline, square spline, ser- ration and trochoidal gear, were constructed by pilling up the velocity components according to the shape of tooth and billet. The billets, of hollow and solid, were Al 2218 and 2024. To verify the method, the analyses and experiments were carried out and compared with each other. For analyses, the half pitches of com- ponents were divided into several deformation regions based on their tooth profile. A neutral surface was used to represent the inner flow of material during forging. Its location varied with the energy optimazation and its contour varied with the number of teeth. In experiment, the contour of material filling up the tooth zone is hyperbolic curve caused by the frictional drag on the interface of die-wall/workpiece but, in the analysis, it is an arc which retains the same contour during all forging operation.

  • PDF

Spur gear forging tool manufacturing method considering elastic deformation due to shrink-fitting (열박음에 의한 탄성변형을 고려한 평기어금형 제작 방법에 관한 연구)

  • Kang, J.H.;Ko, B.H.;Jae, J.S.;Kang, S.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.381-385
    • /
    • 2006
  • This research introduces easy tool manufacturing method regarding tool manufacturing procedure. In the conventional method, wire cutting machining and lapping operation of corner and render region were performed after shrink-fitting to ensure the accuracy of gear profile. But lapping operation is very difficult due to corner and render is located deep inside of die. In this research, wire cutting operation was performed after $1^{st}$ ring was shrink-fitted to ease lapping operation and increase the accuracy of corner radius. Before $2^{nd}$ ring fitting, lapping was completed. Elastic deformation amount due to $2^{nd}$ ring fitting and cold forging was calculated through finite element analysis and wire cutting specification was offset in that amount. Comparison of gear dimension between analysis and forged part ensures the validity of new manufacturing methods.

  • PDF

An upper bound analysis for closed-die forging of spur gear forms (스퍼어 기어의 밀폐단조에 관한 상계해석)

  • Park, J.C.;Hur, K.D.;Park, J.U.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.26-37
    • /
    • 1994
  • A kinematically admissible velocity field for the numerical analysis of closed-die forging process of spur gear is proposed. The velocity field is divided into three regions of deformation. In the analysis, the involute curve is approximated to be straight line and the upper-bound method is used to calculate energy dissipation rate. A constant frictional frictional factor has been assumed on the contacting surfaces. The effects of root diameter, number of teeth, and friction factor are determined on the relative forging pressure. The frictionless relative pressure is independent of root diameter for the same number of teeth, but increases with the number of teeth on a given root diameter. In the presence of friction, the relative forging presure increasing root diameter at the start of forging, but decreases with increasing root diameter in the processing of forging.

  • PDF

A Study on Improvement of Dimensional Accuracy of Cold forged Helical Gears using Back Pressure Forming (배압성형을 이용한 냉간단조 헬리컬 기어의 치수정밀도 향상에 관한 연구)

  • Kim, H.S.;Jung, H.C.;Lee, Y.S.;Kang, S.H.;Lee, I.H.;Choi, S.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.139-142
    • /
    • 2009
  • As important mechanical elements, gears have been used widely in power transferring systems such as automobile transmission and there have been several researches trying to make gear parts with cold or warm forging in order to reduce cost and time required to gear manufacturing process. Although forging processes of spur and bevel gears have been developed as practical level owing to active previous researches in Korea, the manufacturing of helical gear has been still depended on traditional gear cutting processes such as hobbing, deburring and shaving. In order to manufacture helical gears with cold forging process, a research project supported by government has been conducted by Daegu university, KIMS and TAK and this paper deals with effects of back pressure forming technique to cold forging of helical gear as a fundamental research.

  • PDF