• 제목/요약/키워드: Forging analysis

검색결과 571건 처리시간 0.024초

실험계획법을 적용한 라이너 단조 공정의 유한요소해석 (DOE approach in the FE Simulation of Liner Forging Process)

  • 김용관;강경필;서승재;이재근;윤태식;이경훈
    • 소성∙가공
    • /
    • 제27권6호
    • /
    • pp.356-362
    • /
    • 2018
  • A liner is a crucial component that directly affects the penetration performance of the shaped charge warhead. If the material of the liner has fine grain size and high strength, then the penetration performance can be further improved. There have been attempts to use a preform obtained by a severe plastic deformation (SPD) process. In this study, the process of minimizing the strain deviation to maintain the characteristics of material obtained by the severe plastic deformation process was investigated. The FE analysis of liner forging process was performed using the design of experiments (DOE), to optimize various shape parameters of the forming process such as shape of preform and forging die. As a result, the combination of design variables with the minimum effective strain deviation in the liner forging process were obtained.

자동변속기 이너레이스 스플라인 치형의 정밀열간단조 공정에 관한 연구 (A study on the precision hot forging process for spline teeth of inner-race in auto-transmission)

  • 김현수;이정환;김현필;김용조;강성훈
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.24-30
    • /
    • 2012
  • In this study, the hot forging technology for precision forming of spline teeth of the inner race in the auto-transmission was developed in order to minimize its finishing allowance. Several blocker and finisher shapes for the precision hot forging process of the inner race were proposed and the forging processes were analyzed using the three-dimensional finite element method. The optimum hot forging process was obtained considering some parameters such as metal flow patterns, forging defects and forming load. Blocker and finisher dies for the hot forging process were designed by selecting the most suitable shapes obtained from the finite element analysis. Experimental works were also performed in order to verify the optimum design of hot forging process.

  • PDF

냉간 단조용 금형의 탄성변형 예측 (The Prediction of Elastic Deformation for Cold Forging Die)

  • 이영선
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.108-111
    • /
    • 1999
  • Elastic deformation of die has been investigated to improve the accuracy of cold forged parts. In order to improve the accuracy of forged parts we have investigated the elastic deformation of forging die by analysis with commercial. F. E. M code DEFORM and experiments using he strain gages. In the F. E. M analysis two types are used for elastic deformation of die. the one considers die as elastic body and the other considers the die as rigid body. The latter relatively takes a lot of time. The results from the two types are very similar with each other. Considering the results of analysis and experiments it is likely that the elastic strain of forging die is very small.

  • PDF

반용융단조 공정의 유한요소해석에 관한 연구 (A Study of Finite Element Analysis for Semi-Solid Forging)

  • 이주영;김낙수;김중재
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.159-164
    • /
    • 1997
  • The optimal conditions were investigated in order to manufacture the light automotive body parts using the semi-solid forging process by the finite element nalysis. Considering about macro-segregation cause to difference of relative velocity between solid phase and liquid phase, solidificational phenomenon cause to heat transfer from die and export of the latent heat, so solid fraction updating algorithm can be proposed. The rigid thermo-viscoplastic finite element analysis was carried out according to die temperature with proposed algorithm, so availability of forming part were understood. The finite element program can be used to the analysis of semi solid forging process.

  • PDF

인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석 (Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft)

  • 권혁홍;문관진;송승은
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

단조 해석을 통한 비대칭 날개면 용접 너트의 최적 공정 설계 (Development of an Unparalleled Shape Weld Nut Optimized by Forging Analysis Tool)

  • 박종혁;서재윤;설주연;황우성;이광희;김진용
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.81-86
    • /
    • 2018
  • In the cold forming process, it is not easy to fabricate a asymmetric type nut, due to the difficulty in the exact prediction of metal-flow. As we have identified, in that case, it often results in the various forging defects such as burrs, and an incomplete shape, as well as other problems because of this issue. In the current study, we introduce the development of an unparalleled shape Weld Nut by using a forging analysis tool (AFDEX). For the multi-forming machine, the optimized shapes of each intermediate product (step product) could be found by the use of a model for the prediction and analysis of various types, sizes and heights. Chiefly, forging tools were prepared based on the simulation results and an unparalleled shape could be prepared at one time without any burrs, incomplete shape and size.

초소형 나사 단조시 접힘결함 향상을 위한 유한요소해석 (Finite Element Analysis for Improvement of Folding Defects in the Forging Process of Subminiature Screws)

  • 이지은;김종봉;박근
    • 한국정밀공학회지
    • /
    • 제32권6호
    • /
    • pp.509-515
    • /
    • 2015
  • Recent trends to reduce the size of mobile electronics products have driven miniaturization of various components, including screw parts for assembling components. Considering that the size reduction of screws may degenerate their joining capabilities, the size reduction should not be limited to the thread region but should be extended to its head region. The screw head is usually manufactured by forging in which a profiled punch presses a billet so that plastic deformation occurs to form the desired shape. In this study, finite element (FE) analysis was performed to simulate the forging process of a subminiature screw; a screw head of 1.7 mm diameter is formed out of a 0.82 mm diameter billet. The FE analysis result indicates that this severe forging condition leads to a generation of folding defects. FE analyses were further performed to find appropriate punch design parameters that minimize the amount of folding defects.

선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계 (Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine)

  • 황범철;이우형;배원병;김철
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

FEM을 이용한 원형 자유단조의 공정인자 영향에 관한 연구 (Effect of Process Parameters on Cylindrical Open Die Forging)

  • 최성기;김원태;천명식;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.221-224
    • /
    • 2003
  • In the open die forging process, it is difficult to optimize process parameters such as die shape, initial ingot size, feeding pitch, rotation angle and other process parameters in the operational environments. Therefore in this study, 3D finite element analysis has been performed to obtain optimal process condition for open die forging process. FEM analyses at various feeding pitches and rotation angles provide process conditions to make round bar having precise dimensional accuracy.

  • PDF

POSFORM - 단조공정 해석 및 설계용 CAE 시스템 (POSFORM-A CAE System for Analysis and Design of Forging Processes)

  • 황상무;전만수;류성룡;문호근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.95-104
    • /
    • 1994
  • A finite-element based forging simulator, POSFORM, for automatic computer simulation of two-dimensional and axisymmetric forging processes was introduced in this paper. POSFORM is characterized by solution accuracy, user-friendliness, applicability and extensibility. Basic principles and capabilities of the program were introduced. Several application examples found in cold or hot forging companies of automotive or mechanical parts were given.

  • PDF