• 제목/요약/키워드: Forging Stage

검색결과 122건 처리시간 0.02초

기어블랭크 단조공정의 비교해석 및 공정설계 (A Comparative Analysis and Process Design among the Gear Blank Forging Process)

  • 최호준;허성창;장동환;황병복
    • 소성∙가공
    • /
    • 제8권6호
    • /
    • pp.541-553
    • /
    • 1999
  • Cold forging is a special type of forging process in which metal is forced to flow plastically under compressive force into a variety of shapes in room temperature. Gear blank, which is produced by cold forging, is concerned with the production method of transmission gear. Based on the results of simulation of the current four-stage process, the gear blank forging process for improving the conventional process sequence is designed. The rigid plastic finite element analysis for improving the conventional process. The new process consists of three stage operations with one annealing treatment after first operation. Based on the results of simulation of the proposed process, a required equipment could be selected. The new designed process appears to be more economical in producing the gear blank.

  • PDF

냉간 단조용 금형의 탄성 변형에 관한 실험 및 이론적 연구 (A Study on the Experimental and Theoretical Analysis About the Elastic Deflections of Die for Cold Forging)

  • 이영선;이대근;이정환
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.171-178
    • /
    • 2002
  • The elastic deflections of the cold forging die influence the dimensional accuracy of forged parts. The die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during the loading, unloding and ejecting stage with experimental and FEM analysis. Uni-axial strain gages are used to measure elastic strain of die during each forging stage. Strain gages are attached un the upper surface of die. A commercial F.E.M. code, DEFORM$-2D^{TM}$ is used to predict the elastic strains of die, to be compared those by experiments. Two modelling approaches are used to define the reasonable analysis method. The first of the two modelling approaches is to regard the die as rigid body over forging cycle. And then, the die stress is analyzed by loading the die with pressure from the deformed part. The other is to regard the die as elastic body from forging cycle. The elastic strain of tool is calculated and the tool is elastically deformed at each strep. The calculated results under the elastic die assumption are well agreed wish experimental data using the strain gages.

TR 단조를 위한 유도 가열 공정의 전력제어 (Power Control of Induction Heating Process for TR forging)

  • 송민철;주성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.230-233
    • /
    • 2004
  • The purpose of this study is to establish the optimal induction heating conditions of various preform types used for TR forging. The finite element model coupled electro-magnetic and transient heat transfer was employed to evaluate the distribution of temperature at the billet. Power control method was applied to control temperature of preform in induction heating because TR forging is not a continuous process. Power schedule that consists of heating and holding stage was suggested. In heating stage, power is inversely proportional to diameter of preform but the time of heating stage is directly proportional to the diameter of preform. But, in holding stage, the required power for thermal equilibrium per unit volume of the billet decreases with an increase in a diameter of billet due to the increase of efficiency.

  • PDF

복합단조 공정의 유한요소해석 (Finite Element Analysis of Compound Forging Processes)

  • 전만수;문호근;이민철;서대윤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.546-550
    • /
    • 1996
  • A fully automatic computer simulation technique of axisymmetric multi-stage compound forging processes was presented in this paper. A penalty rigid-viscoplastic finite element method was employed together with an improved looping method for automatically remeshing with quadrilateral finite-elements only. An application example of six-stage axisymmetric forging processes involving one cold and two hot forging processes, two piercing processes and a sizing process was given with emphasis on automatically tracing the metal flow lines through the whole simulation.

  • PDF

알루미늄 이너 타이로드 소켓의 냉간다단단조 유효성 검증 (Effectiveness Validation on Cold Multi-Stage Forging of Aluminum Inner Tie Rod Socket)

  • 박재욱;최종원;정의은;윤일채;강명창
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.49-55
    • /
    • 2022
  • Recently, the automobile industry has continued to demand lighter materials owing to international environmental regulations and increased convenience. To address this demand, aluminum parts have increased in popularity and are mainly developed and produced through hot forging and cold pressing. However, because this method has low yield and low production efficiency, a new manufacturing method is desirable. In this study, the water capacity efficiency of an aluminum inner tie rod socket was investigated using cold forging that provided a high yield and excellent production efficiency. Mechanical properties were derived through tensile testing of 6110A aluminum materials, and critical fracture factor and process analysis based on experimental data were carried out. The optimized process was applied as a prototype using cold multi-stage forging, and based on the derived results, the formability, productivity, and material efficiency of aluminum inner tie rod socket parts using this cold forging process was verified.

탐색 알고리즘을 이용한 냉간 단조 공정 설계 (Multi-Stage Cold Forging Process Design with A* Searching Algorithm)

  • 김홍석;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1995년도 추계학술대회논문집
    • /
    • pp.30-36
    • /
    • 1995
  • Conventionally design for multi-stage cold forging depends on the designer's experience and decision-making. Due to such non-deterministic nature of the process sequence design, a flexible inference engine is needed for process design expert system. In this study, A* searching algorithm was introduced to arrive at the vetter process sequence design considering the number of forming stages and levels of effective strain, effective stress, and forming load during the porcess. In order to optimize the process sequence in producing the final part, cost function was defined and minimized using the proposed A* searching algorithm. For verification of the designed forming sequences, forming experiments and finite element analyses were carried out in the present investigation. The developed expert system using A* searching algorithm can produce a flexible design system based on changes in the number of forming stages and weights.

  • PDF

다단 냉간 단조에 미치는 냉간비조질강의 특성에 관한 연구 (The effect of micro-alloying steel characteristics on the multi-stage forging process)

  • 이승헌;이교택;권용남;김지훈;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.317-320
    • /
    • 2005
  • The micro-alloying forging steels have been developed to save energy consumption during forging and subsequent heat treatment stages. The work hardening ability of micro-alloying forging steels is one of major hardening component while it gives severe die damage if the forging process design is poorly set up on the other hand. In the present study, it was tried to characterize three types of micro-alloying forging steels to understand the differences with the conventional low carbon steels used fur cold forging with a spherodizing heat treatment. After forging of a certain forging part with both micro-alloying forging steels and conventional low carbon steel, several mechanical tests were carried out.

  • PDF

원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구 (Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race)

  • 김화정;진철규
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.

대형 Ingot의 Upset 단조기술에 관한 연구 (A Parametric Study for the Upset Forging of Large Ingot)

  • 박승희;유성만;신상엽
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.101-107
    • /
    • 1999
  • The upset forging stage is the initial work in the forging process. It is used to remove the segregation and cavities of the ingot. Specially in handling large sized ingot, an improper upset forging can cause serious surface tearing. However, there is no detail reference for stable upset forging work. To resolve this difficulty, we studied several factors such as upset forging time, temperature varation of ingot, damage, load and stain rate etc., by using the rigid-plastic finite element approach available in the DEFORM code. Numerical simulation results indicated that: the load value of upset forging works shows severe decreasing trend at a certain point, same as strain rate. Also defects were found to be concentrated around the upper and lower portions of the ingot. With these results, we can estimate a guideline for stable upset forging work.

  • PDF

실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구 (A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement)

  • 서영호
    • 소성∙가공
    • /
    • 제30권4호
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.