• 제목/요약/키워드: Forging Pressure

검색결과 115건 처리시간 0.025초

스테인리스강 압출금형의 마멸 감소를 위한 설계 (Design of STS304 Extrusion Die for Wear Reduction)

  • Kim, T.H.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.106-113
    • /
    • 1996
  • Using stainless steel as the cold forged parts especially the outer parts of automobile is gradually increasing because it can bear up against the erosion and the wear. During cold forging of the stainless steel the working pressure acting on die surface are very high therefore the wear on die surface can be greatly increased. In cold forging processes, die failure must be considered before die design. One of the main reasons of die failure in industrial application of metal forming technologies is wear. The die wear affects the tolerances of forged parts, metal flow and costs of processes etc. The only way to to control these failures is to develop methods which allow prediction of the die wear and which are suited to be used in the desing stage in order to optimize the process. In this paper, the rigid-plastic finite element method was combined with the wear prediction routine and then the forward extrusion process using stainless steel was analysed simultaneously. To minimize the die wear the FPS algorithm was applied and the optimal conditions of die configuration are suggested.

  • PDF

강소성압연법으로 제조된 초미세립 마그네슘 재료의 마이크로 성형능 (Micro-forming Ability of Ultrafine-Grained Magnesium Alloy Prepared by High-ratio Differential Speed Rolling)

  • 유성진;김우진
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.104-111
    • /
    • 2011
  • An ultrafine grained Mg-9Al-1Zn magnesium alloy with the mean grain size less than $1{\mu}m$ was produced by using high-ratio differential speed rolling. The processed alloy exhibited excellent superplasticity at relatively low temperatures. The micro-forming tests were carried out using a micro-forging apparatus with micro V-grooved shaped dies made of silicon and the micro-formability was evaluated by means of micro-formability index, $R_f$ ($=A_f/A_g$, $A_f$: formed and inflowed area into the V-groove, $A_g$: area of the V-groove). The $R_f$ value increased with temperature up to $280^{\circ}C$ and then decreased beyond $300^{\circ}C$. The decrease of the $R_f$ value at $300^{\circ}C$ was attributed to the accelerated grain coarsening. Increasing the micro-forging pressure increased the $R_f$ values. At a given die geometry, die filling ability decreased as the die position moved away from the die center to the end. FEM simulation predicted this behavior and a method of improving this problem was proposed.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging)

  • 권진욱;이정환;이영선;권용남;배원병
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

열간단조시 금형과 소재간 계면열전달계수에 관한 연구 (A study of interface heat transfer coefficient between die and workpiece for hot forging)

  • 권진욱;이영선;권용남;이정환;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF

위상배열 초음파기법을 이용한 발전기 로터 결점크기 평가 (Evaluation Technology for the Flaw Sizing of Generator Rotor by Using Phased Array Ultrasonic Technique)

  • 김진회;박철용;이상훈
    • 한국압력기기공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.14-19
    • /
    • 2009
  • NDE(Nondestructive examination) detects a flaw or discontinuity in materials. Flaws detected by the examination shall be evaluated for the decision basis of the integrity. The internal flaws of forging products can be detected by UT. However, UT has detection limits because of its reflected signal weakness. Normally, a 1mm or less flaw is known as the limit. If a flaw was detected, the size of flaw would be evaluated by AVG(or DGS) technique. To verify the evaluation data, alternative examination methods are needed. But there is no alternative examination methods until now. In this study, Phased array ultrasonic technique can be used to size the flaws in the generator rotor with focused beam of ultrasonic wave as a supplement method of AVG. Also, the phased array ultrasonic technique described enables the shape of flaw to be depicted exactly.

  • PDF

Die design system for deep drawing and ironing of high pressure gas cylinder

  • Yoon Ji-Hun;Choi Young;Park Yoon-So
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.31-36
    • /
    • 2005
  • This paper describes a research work on the die design for the deep drawing & ironing(D. D. I) of high pressure gas cylinder. D. D. I die set is large-sized die used in horizontal press, which is usually composed of a drawing, and an ironing die. Design method of D. D. I die set is very different from that of conventional cold forging die set. Outer diameter of the die set is fixed because of press specification and that of the insert should be as small as possible for saving material cost. In this study, D. D. I die set has been designed to consider those characteristics, and the feasibility of the designed die has been verified by FE-analysis. In addition, the automated system of die design has been developed in AutoCAD R14 by formulating the applied methods to the regular rules.

중공축 소재를 이용한 전후방 복합압출의 성형 특성 (Forming Characteristics of the Forward and Backward Tube Extrusion Using Pipe)

  • 김성현;이호용
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.772-778
    • /
    • 2005
  • This paper is concerned with the analysis of material flow characteristics of combined tube extrusion using pipe. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The combined tube extrusion is analyzed by using a commercial finite element code. This simulation makes use of pipe material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. Deformation patterns and its characteristics in combined forward and backward tube extrusion process were analyzed for forming loads with primary parameters, which are various punch nose radius relative to backward tube thickness. The results from the simulation show the flow modes of pipe workpiece and the die pressure at the contact surface between pipe workpiece and punch. The specific backward tube thickness and punch nose radius have an effect on extruded length in combined extrusion. The combined one step forward and backward extrusion is compared with the two step extrusion fer forming load and die pressure.

핫프레스포밍용 주조, 단조 금형에 대한 시간과 압력에 따른 대류열전달계수의 예측 (The Prediction of Interfacial Heat Transfer Coefficient According to Contact Time and Pressure in Forging and Casting Die Materials for the Hot Press Forming)

  • 김낙현;강충길
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.378-386
    • /
    • 2010
  • Nowadays there has been great interest in using heat treated cast material for press dies due to several advantages like reduction in die production costs. However, in hot press forming processes H13 forged tool steel is mostly used. Cooling performance of dies in hot press forming processes is considered as an important factor of study and also the IHTC parameter between cast material die and sheet metal should be considered as an essential. In the present study, the IHTC was calculated for the sheet metal in the hot press forming process with cast and forged material dies. The temperature measurements were performed for the sheet metal, casting and forged material dies by applying various contact pressure in hot press forming. IHTC was calculated and studied by adopting the inverse heat convection method in DEFORM-2D. Each IHTC was considered as a function of contact time and contact pressure. The experimental data were compared with calculated data obtained from the proposed equation and references.

차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발 (High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant)

  • 김민철;박상규;이기형;이봉상
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

고압가스 용기의 제조를 위한 금형설계에 관한 연구 (A Study on the Die Design for Manufacturing of High Pressure Gas Cylinder)

  • 최영;윤지훈;박윤소;최재찬
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.153-162
    • /
    • 2004
  • This paper describes a research work on the die design for the deep drawing & ironing(D.D.I.) of high pressure gas cylinder. D.D.I die set is large-sized die used in horizontal press, which is usually composed of drawing, and ironing die. Design method of D.D.I. die set is very different from those of conventional cold forging die set.. Out diameter of the die set is fixed because of press specification and out diameter of the insert should be as small as possible for saving cost of material. In this study, D.D.I die set has been designed to consider those characteristics and the feasibility of the designed die has been verified by FE-analysis. In addition, the automated system of die design has been developed in AutoCAD R14 by formulating the applied methods to the regular rules.