• Title/Summary/Keyword: Forging Experiment

Search Result 146, Processing Time 0.025 seconds

Study on the Precision Cold Forging for Steering Yoke of Automobiles (자동차 Steering Yoke의 정밀냉간단조에 대한 연구)

  • 민동균
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.120-123
    • /
    • 1999
  • The precision cold forging process for steering yoke of automobile has been analysed by using rigid-plastic finite element analysis code DEFORM-3D Also the experiment has been performed through the optimized process. Until now steering yoke has been largely manufactured by hot forging or welding of forged head and shaft parts because of technical difficulty. the study has shown successful results of the precision cold forging through the proper selection of the process.

  • PDF

Study on forming Process of Piston Crown Using Near Net Shaping Technology (재료이용율 향상을 위한 피스톤 크라운 성형공정 연구)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, H.S.;Choi, I.J.;Baek, D.K.;Choi, S.K.;Park, Y.B.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.197-198
    • /
    • 2008
  • The forging process produces complicated and designed components in a die at high productivity for mass production and minimizes the machining amount for favorable material utilization; the forging products used at highly stressed sections are well accepted at a wide range of industry such as automobile, aerospace, electric appliance and et cetera. Accordingly, recent R&D activities have been emphasized on improvement of forging die-life and near net shaping technology for cost effectiveness and better performance. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products. It is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; ${\phi}$ 6.0 mm and ${\phi}$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. In addition for forming experiment of piston grown air drop hammer with a capacity of 16 ton was used. The experiment with piston crown was carried out to show the formability and void closing status. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process. Also forging defects through forming process for piston crown was improved using the experiment results and FE analysis. Consequently this paper deals with the effect of radial parameters in cogging process on a void closure far large forged products and formability of piston crown.

  • PDF

Web-based Visualization of Forging Operation by Using Virtual Reality Technique

  • Lee, Young-Seok;Hwang, Ho-Jin;Oh, Jea-Woo;Park, Man-Jin;Lee, Tae-Hong;Jang, Dong-Young
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.274-279
    • /
    • 2001
  • This paper presented a virtual manufacturing simulation system by using Virtual Reality Modeling Language (VRML) and Finite Element Method(FEM). The system is to simulate forging operation. Stress distributions and deformation profiles as well as the operation of forging machine can be simulated and visualized in the web. Since the forging machine, user interface, and specimen were modeled by using Java and VRML, the forging machine and analysis results were browsed and integrated on the web that is interfaced to users through EAI to show the whole forging simulation. The developed system realized the working environment virtually so that education and experiment of forging process could be performed effectively even on the PC.

  • PDF

Comparison of Hot Forging Characteristics of Mg Alloys (Mg합금의 열간단조 특성 비교)

  • Kim, T.O.;Lee, J.H.;Kwon, Y.N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.75-77
    • /
    • 2007
  • Mg alloys have the highest specific strength which can be used industrial application. Since formability of Mg alloys is very limited, optimization of forming process is always needed for successful engineering application. In the present study. three different Mg alloys were used for hot forging processes and several process variables such as temperature and forging speed were investigated to improve forgeability of Mg alloys. To understand the effect of process variables in details, 2D-finite element analysis and forging experiment was performed. In the results, forging speed seems to be more important than forging temperature in hot forging of Mg alloys.

  • PDF

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.

Experiment of Turbine Blade Forging Process using Model Material and SLA Prototype Die Set (SLA 시금형을 이용한 터빈블레이드 단조공정의 모델 실험)

  • Park, K.;Shin, M.C.;Yang, D.Y.;Cho, C.R.;Kim, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.71-77
    • /
    • 1995
  • In this paper, an experimental study of hot forging process is carried out using plasticine. In order to manufacture the die set, Stere olithography Apparatus(SLA) which is most widely used rapid prototyping system is introduced. Turbine blade forging is executed using plasticine and the SLA prototype die set. Through the experiment ,it turned out that SLA prototype is suitable to the die set for the plasticine workpiece, and theformability and forming load of turbine blade forging are predicted.

  • PDF

Prediction of the Behavior of dynamic Recrystallization in Inconel 718 during Hot Forging using Finite Element Method (유한요소법을 이용한 Inconel 718의 열간단조공정시 동적재결정거동 예측)

  • Choi, Min-Shik;Kang, Beom-Soo;Yum, Jong-Taek;Park, Noh-Kwang
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.197-206
    • /
    • 1998
  • This paper presents the prediction of dynamic recrystallization behavior during hot forging of Inconel 718. Another experiment of pancake forging was also carried out to examine the recrystallization ration dynamically recrystallizaed grain size, and grain growth in the forging. In experiments cylindrical billets were forged by two operations with variations of forging temperature, reduction ration of deformation. and preheating process at each forging step. Also the finite element program, developed here for the prediction using the metallurgical models was used for the analysis of to Inconel 718 upsetting and the results were compared with experimental ones.

  • PDF

A Study on Non-Axisymmetric Precision Forging with and without Flash (플래쉬 유무에 따른 비축대칭 정밀단조에 관한 연구)

  • 배원병;김영호;최재찬;이종헌;김동영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.218-223
    • /
    • 1993
  • An UBET(Upper Bound Elemental Technique) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner and plane-strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, from which the upper-bound forging load, the flow pattern, the grid pattern, the veocity distribution and the effective strain are determined. To show the merit of flashless forging, the result of flashless and flash forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

Forging Defects Analysis by Full 3-Dimensional Simulation based on F.V.M. (단조품 결함에 대한삼차원 단조 공정 해석)

  • 박승희;제정신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.216-220
    • /
    • 2003
  • Most important for meaningful forging simulation is the determination of correct process parameters. In addition a check and a compensation of the data base after the comparison between experiments and the computation of the developed process is necessary. The existence of a systematic process parameter data bank for special kinds of forming process in combination with forging specific simulation lifts the value of the products. Finite volume method is applied to simulate the hot forging process to investigate the defects for the automobile product. Three typical forging processes have been investigated; Extrusion by hydrolic press, Upsetting by crank press and Inclined upsetting by hammer press. Simulated result has compared with the experiment and provided a direction to improve the process.

  • PDF