• Title/Summary/Keyword: Forged Material

Search Result 123, Processing Time 0.021 seconds

Die-Speed Optimization in Titanium-Disk Near-Net Shape Hot-Forging (티타늄디스크 근사정형 열간단조시 금형속도의 최적화)

  • 박종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.896-907
    • /
    • 1995
  • Titanium 6242(.alpha. + .betha.) alloy has a good strength/weight ratio and is used for aircraft components such as engine disks and compressor blades. When this material is forged at an elevated temperature, the process parameters should be carefully controlled because the process window of this material is quite narrow. In the present investigation, a rigid-thermoviscoplastic finite element method is used to predict the deformation behavior and temperature/strain distributions in an engine disk during near-net shape hot forging. The purpose of the investigation is to obtain a proper ram speed profile, assuming the hydraulic press used in the forging is capable of varying ram speed during loading. In result, it was found that the ram speed at constant strain-rate of 0.5/sec shows a sound deformation behavior, a relatively uniform deformation and a good temperature distribution. This information is also valuable in predicting resulting microstructures in the disk.

A Study on the Design of the Prestressed Precision Cold Forging Die (예압된 정밀 냉간단조 금형설계에 관한 연구)

  • Yeo, H. T.;Choi, Y.;Hur, K. D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.377-380
    • /
    • 2000
  • The dimensional accuracy of the cold forged part is depended on the elastic characteristics of the die. To obtain the high stiffness of the prestressed die, the first stress ring of the tungsten carbide material is considered. For the design, Lam 's equation is used. The design of the prestressed die has been compared with the conventional that. For the comparison, the FE-analysis using ANSYS has been performed. The results indicate that the prestressed die with the high stiffness can be obtained by the using the high stiffness material as the first stress ring.

  • PDF

Forging of Long Hollow Shafts of Hard-to-Form Material by Hollow Shaft Extrusion after Piercing with Back Pressing (후방 가압식 피어싱 및 중공축 압축 공법에 의한 난성형 재료 중공장축의 단조)

  • Jun, B.Y.;Lee, J.H.;Eom, J.G.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.338-343
    • /
    • 2007
  • We presented a special method of forging hollow shafts of hard-to-form material, which is composed of piercing with back pressing and hollow shaft extrusion. The presented method was applied to cold forging a bushing of an excavator. The finite element simulation technology was employed for developing the optimized process and the predictions were compared with the experiments. The method was also applied to an automotive part and was verified to be powerful for manufacturing the cold forged hollow shafts of the hard-to-form materials.

  • PDF

Innovative Materials and Production Techniques for Sinterforged PM Aluminium Components with Improved Performance

  • Neubing, Hans-Claus;Ichikawa, Junichi;Gradl, Johann
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.710-711
    • /
    • 2006
  • High strength PM aluminium alloys Al-Zn-Mg-Cu (7075 type) were studied by using commercially available powder blends and the sinter-forging technique for component production. Principal areas of focus include the response to PM processing, micro structural assessment and material properties of Aluminium sinter forged products. Green preforms are successfully sintered to near full density by solid-supersolidus liquid phase sintering. Sinter forging method can produce components with net shape and mechanical characteristics of the material have improved greatly. Properties of this new PM Al-alloy were found to be reproducible in an industrial production environment.

  • PDF

Process variables and die life for cold forging (냉간단조용 금형 수명에 미치는 공정 변수의 영향)

  • Lee Y. S.;Choi S. T.;Kwon Y. N.;Rhyim Y. M.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • For the production of cold forged parts with near-net-shape attributes, the quality of the tool system is responsible for an essential portion of costs fer the finished components. Therefore, a tool lift is one of the important issues on cold forging industry. There are many complicated variables related with tool life, such as material, heat-treatment, coating, lubricant, process design. In this study, heat-treatment of tool material and lubricant are investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, friction factor of lubricants for cold forging are measured by the ring compression test. Zinc-Phosphate and $MoS_2$ lubricant is effective to sustain the friction factor under 0.1.

  • PDF

A Process Design for Hot-Forging of a Titanium-6242 Disk (티타늄-6242 디스크의 열간단조를 위한 공정설계)

  • 박종진
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.271-281
    • /
    • 1994
  • Titanium-6242 $({\alpha}+{\beta})$ alloy has been used for aircraft engine components such as disks and blades, because it has an excellent strength/weight ratio at high temperatures. When this material is forged to manufacture disks, process parameters should be carefully designed to control strain and temperature distributions within the process windows by which desirable mechanical properties can be produced. In the present investigation, it was intended to design the process parameters for a conventional hot forging of this material by using a rigid-thermoviscoplastic finite element analysis technique. It was assumed that the process was performed by a screw press which is capable of maintaining a constant ram speed during loading. From the analysis results, it was found out that the initial temperature of the workpiece and the die shape were important parameters to control the forging process. In result, these parameters were properly designed for hot forging of a disk with specific dimensions.

  • PDF

The effect of forging process conditions of semi-solid aluminum material on mechanical properties (반용융 알루미늄재료의 단조공정조건이 기계적 성질에 미치는 영향)

  • Gang, Chung-Gil;Gang, Dong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1400-1413
    • /
    • 1997
  • Semi-solid forging(SSF) process of A356 aluminium alloy has been studied to assess the effect of process variables on the component integrity. Semi-solid material(SSM) was fabricated by mechanical and electro-magnetic stirring process. The fabricated SSM by using mechanical stirring process has been carried out on cooling rate of 0.022.deg. C/sec 0.0094.deg. C/sec and stirring speed n=600, 1000 rpm, respectively. The fabricated SSM by using electro-magnetic stirring process is supplied by Pechiney. The holding time and temperature in the semi-solid state before forging also affects the globular microstructure of alloy. Therefore, the influence of these two parameters is discussed in terms of the microstructure of alloy. The SSF process has been conducted with three different die temperatures($T_{die}$=250.deg. C, 300.deg. C, 350.deg. C) and two kinds of gate types(straight gate and orifice gate). This paper is to investigate the influence of gate shapes of die on filling phenomena in SSF process more deeply. The mechanical properties of forged components were also investigated for variation of process conditions such as die temperature, gate shape and SSM.

Process Design on Fabrication of Large Sized Ring by Mandrel Forging of Hollow Cast Ingot (중공 잉곳을 이용한 대형 링 단조품 제조공정 설계 연구)

  • Lee, S.U.;Lee, Y.S.;Lee, M.W.;Lee, D.H.;Kim, S.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.329-336
    • /
    • 2010
  • Ring forging process is more appropriate for high-length and thin walled ring, because it utilizes the forging press and hence does not require heavy-duty ring rolling mill. Although ring forging process is very simple and economic for facilities, the process is not efficient because of multi-forging-step and low material utilization. An effective ring forging process is developed using a hollow ingot. When a hollow ingot is used with a workpiece, the ingot can be forged into a final ring without multi-stage pre-forging process, such as, cogging, upsetting, and piercing, etc.. Finally it has advantages of the material utilization and process improvement because a few reheating and forging process are not necessary to make workpiece for ring forging. The important design variables are the applied plastic deformation energy to eliminate cast structure and make uniform properties. In this study, the mechanical properties after forging of hollow cast ingot were investigated from the experiment using circumferential sectional model. Also, the effects of process variables were studied by FEM simulation on the basis of thermo-visco-plastic constitutive equation. Applied strain is different at each position in length direction because diameter of hollow ingot is different in length direction. The different strain distribution become into a narrow gap by additional plastic deformation during diameter extension process.

A study on the change of material width by forging processing in fine pitch connector of C5210-H(HP) and NKT322-EH materials (C5210-H(HP)와 NKT322-EH 소재의 협피치 커텍터에서 단조 가공에 의한 소재 폭 변화에 관한 연구)

  • Shin, Mi-Kyung;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.17-22
    • /
    • 2020
  • As devices such as smartphones, tablet PC, and wearable devices have been miniaturized, the connectors that go into the devices are also designed to be very small. The connector combines the plug and the receptacle to transfer electricity. As devices are miniaturized, the contact shape is formed by partially thinning the thickness of the raw material of the terminal in order to lower the coupling height of the plug and receptacle. The product used in this study is a receptacle terminal used for 0.4mm pitch board to board connector among fine pitch connectors. When the material thickness is reduced by forging the receptacle terminal, the width change of the pin is checked. To reduce the thickness of the material by forging, pre-notching is applied in the first step, forging in the second step, and notching in the third step. After forming the width dimension of the pin to 0.28 mm in the pre-notching process, in the forging process, the material thickness 0.08 mm and 0.02 mm (25%) were forged and the thickness was changed to 0.06 mm and the width change amount of the pin was measured. The facility produced 10,000 pieces at 400 SPM using a Yamada Dobby (MXM-40L) press, and thirty pins were measured and the average value was shown. After forging by using C5210-H (HP) and NKT322-EH, which are frequently used in connectors, analyze the amount of change in each material. The effect of punching oil on forging is investigated by appling FM-200M, which is highly viscous, and FL-212, fast drying oil. This study aims to minimize mold modification by predicting the amount of material change after forging.

Study on forming Process of Piston Crown Using Near Net Shaping Technology (재료이용율 향상을 위한 피스톤 크라운 성형공정 연구)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, H.S.;Choi, I.J.;Baek, D.K.;Choi, S.K.;Park, Y.B.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.197-198
    • /
    • 2008
  • The forging process produces complicated and designed components in a die at high productivity for mass production and minimizes the machining amount for favorable material utilization; the forging products used at highly stressed sections are well accepted at a wide range of industry such as automobile, aerospace, electric appliance and et cetera. Accordingly, recent R&D activities have been emphasized on improvement of forging die-life and near net shaping technology for cost effectiveness and better performance. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products. It is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; ${\phi}$ 6.0 mm and ${\phi}$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. In addition for forming experiment of piston grown air drop hammer with a capacity of 16 ton was used. The experiment with piston crown was carried out to show the formability and void closing status. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process. Also forging defects through forming process for piston crown was improved using the experiment results and FE analysis. Consequently this paper deals with the effect of radial parameters in cogging process on a void closure far large forged products and formability of piston crown.

  • PDF