• Title/Summary/Keyword: Forest-Fire-Detection

Search Result 74, Processing Time 0.029 seconds

A SENSOR DATA PROCESSING SYSTEM FOR LARGE SCALE CONTEXT AWARENESS

  • Choi Byung Kab;Jung Young Jin;Lee Yang Koo;Park Mi;Ryu Keun Ho;Kim Kyung Ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.333-336
    • /
    • 2005
  • The advance of wireless telecommunication and observation technologies leads developing sensor and sensor network for serving the context information continuously. Besides, in order to understand and cope with the context awareness based on the sensor network, it is becoming important issue to deal with plentiful data transmitted from various sensors. Therefore, we propose a context awareness system to deal with the plentiful sensor data in a vast area such as the prevention of a forest fire, the warning system for detecting environmental pollution, and the analysis of the traffic information, etc. The proposed system consists of the context acquisition to collect and store various sensor data, the knowledge base to keep context information and context log, the rule manager to process context information depending on user defined rules, and the situation information manager to analysis and recognize the context, etc. The proposed system is implemented for managing renewable energy data management transmitted from a large scale area.

  • PDF

Fire detection system and alarm system using wild boars (동물들을 이용한 재난 조기 경보 시스템의 설계 및 분석)

  • Jeong, Eui-Jong;Lee, Goo-Yeon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.719-720
    • /
    • 2006
  • Ad hoc networks does not need any wired network infrastructure. Therefore, they have been developed in temporary networks or mainly in military networks. Infostations offer geographically intermittent coverage at high speeds. Up-to-date there have been frequent big forest fires in Korea mountain areas. It is very important to detect them early to prevent them from being big disasters. In this paper, we propose a disaster emergency management system using sensor attached wild boars' mobility combined with infostation system. We also make a numerical analysis of the performance of the system.

  • PDF

Forest fire detection in Kangwon Province using RADARSAT-1 SAR data (RADARSAT-1 SAR 영상을 이용한 강원도 산불지역 관측)

  • Kim, Sang-Wan
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.309-313
    • /
    • 2009
  • 산불은 전세계적으로 발생하는 가장 주요한 재해현상 중 하나이다. 산불 감시나 산불에 의한 피해지역의 효과적인 관측은 피해 지역을 최소화하고, 효율적인 피해 복구 계획 수립에 매우 중요한 기초자료를 제공한다. 광학 위성 자료를 활용한 산불 피해지역 탐지가 널리 사용되고 있음에도 불구하고, 산불에 의한 연기 또는 구름 분포에 의해 종종 사용상에 제약이 있다. 본 연구에서는 2000년 4월 강원도 고성, 강릉, 삼척, 물진 지역에서 발생한 대규모 산불을 연구 대상지역으로 하여, 1998년-2000년 동안 획득된 RADARSAT-1 SAR 영상을 이용하여 산불 피해 지역 감시의 활용성을 연구하였다. 산불에 의한 산림 피해지역 관측을 위해 RADARSAT-1 SAR 영상의 후방산란관의 변화를 통한 변환 탐지를 수행하였다. 산불 피해지역에서 산불 전에 비해 산불 후에 획득된 RADARSAT-1 SAR 영상의 후방산란값이 증가하는 것으로 관측되었다. RADARSAT-1 SAR 영상으로부터 관측된 산불 피해 지역은 Landsat-7 ETM 자료와 현장 조사 자료에 의한 산불 피해 지역과 매우 상관성이 높은 것으로 관측되었다.

  • PDF

Fire Severity Mapping Using a Single Post-Fire Landsat 7 ETM+ Imagery (단일 시기의 Landsat 7 ETM+ 영상을 이용한 산불피해지도 작성)

  • 원강영;임정호
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.85-97
    • /
    • 2001
  • The KT(Kauth-Thomas) and IHS(Intensity-Hue-Saturation) transformation techniques were introduced and compared to investigate fire-scarred areas with single post-fire Landsat 7 ETM+ image. This study consists of two parts. First, using only geometrically corrected imagery, it was examined whether or not the different level of fire-damaged areas could be detected by simple slicing method within the image enhanced by the IHS transform. As a result, since the spectral distribution of each class on each IHS component was overlaid, the simple slicing method did not seem appropriate for the delineation of the areas of the different level of fire severity. Second, the image rectified by both radiometrically and topographically was enhanced by the KT transformation and the IHS transformation, respectively. Then, the images were classified by the maximum likelihood method. The cross-validation was performed for the compensation of relatively small set of ground truth data. The results showed that KT transformation produced better accuracy than IHS transformation. In addition, the KT feature spaces and the spectral distribution of IHS components were analyzed on the graph. This study has shown that, as for the detection of the different level of fire severity, the KT transformation reflects the ground physical conditions better than the IHS transformation.

Data Mining based Forest Fires Prediction Models using Meteorological Data (기상 데이터를 이용한 데이터 마이닝 기반의 산불 예측 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.521-529
    • /
    • 2020
  • Forest fires are one of the most important environmental risks that have adverse effects on many aspects of life, such as the economy, environment, and health. The early detection, quick prediction, and rapid response of forest fires can play an essential role in saving property and life from forest fire risks. For the rapid discovery of forest fires, there is a method using meteorological data obtained from local sensors installed in each area by the Meteorological Agency. Meteorological conditions (e.g., temperature, wind) influence forest fires. This study evaluated a Data Mining (DM) approach to predict the burned area of forest fires. Five DM models, e.g., Stochastic Gradient Descent (SGD), Support Vector Machines (SVM), Decision Tree (DT), Random Forests (RF), and Deep Neural Network (DNN), and four feature selection setups (using spatial, temporal, and weather attributes), were tested on recent real-world data collected from Gyeonggi-do area over the last five years. As a result of the experiment, a DNN model using only meteorological data showed the best performance. The proposed model was more effective in predicting the burned area of small forest fires, which are more frequent. This knowledge derived from the proposed prediction model is particularly useful for improving firefighting resource management.

Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery (UAV와 다시기 위성영상을 이용한 붕괴건물 탐지)

  • Jung, Sejung;Lee, Kirim;Yun, Yerin;Lee, Won Hee;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.187-196
    • /
    • 2020
  • In this study, collapsed building detection using UAV (Unmanned Aerial Vehicle) and PlanetScope satellite images was carried out, suggesting the possibility of utilization of heterogeneous sensors in object detection located on the surface. To this end, the area where about 20 buildings collapsed due to forest fire damage was selected as study site. First of all, the feature information of objects such as ExG (Excess Green), GLCM (Gray-Level Co-Occurrence Matrix), and DSM (Digital Surface Model) were generated using high-resolution UAV images performed object-based segmentation to detect collapsed buildings. The features were then used to detect candidates for collapsed buildings. In this process, a result of the change detection using PlanetScope were used together to improve detection accuracy. More specifically, the changed pixels acquired by the bitemporal PlanetScope images were used as seed pixels to correct the misdetected and overdetected areas in the candidate group of collapsed buildings. The accuracy of the detection results of collapse buildings using only UAV image and the accuracy of collapse building detection result when UAV and PlanetScope images were used together were analyzed through the manually dizitized reference image. As a result, the results using only UAV image had 0.4867 F1-score, and the results using UAV and PlanetScope images together showed that the value improved to 0.8064 F1-score. Moreover, the Kappa coefficiant value was also dramatically improved from 0.3674 to 0.8225.

Detection of Wildfire Burned Areas in California Using Deep Learning and Landsat 8 Images (딥러닝과 Landsat 8 영상을 이용한 캘리포니아 산불 피해지 탐지)

  • Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1413-1425
    • /
    • 2023
  • The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

Detection of short-term changes using MODIS daily dynamic cloud-free composite algorithm

  • Kim, Sun-Hwa;Eun, Jeong;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.259-276
    • /
    • 2011
  • Short-term land cover changes, such as forest fire scar and crop harvesting, can be detected by high temporal resolution satellite imagery like MODIS and AVHRR. Because these optical satellite images are often obscured by clouds, the static cloud-free composite methods (maximum NDVI, minblue, minVZA, etc.) has been used based on non-overlapping composite period (8-day, 16-day, or a month). Due to relatively long time lag between successive images, these methods are not suitable for observing short-term land cover changes in near-real time. In this study, we suggested a new dynamic cloud-free composite algorithm that uses cut-and-patch method of cloud-masked daily MODIS data using MOD35 products. Because this dynamic composite algorithm generates daily cloud-free MODIS images with the most recent information, it can be used to monitor short-term land cover changes in near-real time. The dynamic composite algorithm also provides information on the date of each pixel used in compositing, thereby makes accurately identify the date of short-term event.

Design of detection method for smoking based on Deep Neural Network (딥뉴럴네트워크 기반의 흡연 탐지기법 설계)

  • Lee, Sanghyun;Yoon, Hyunsoo;Kwon, Hyun
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.191-200
    • /
    • 2021
  • Artificial intelligence technology is developing in an environment where a lot of data is produced due to the development of computing technology, a cloud environment that can store data, and the spread of personal mobile phones. Among these artificial intelligence technologies, the deep neural network provides excellent performance in image recognition and image classification. There have been many studies on image detection for forest fires and fire prevention using such a deep neural network, but studies on detection of cigarette smoking were insufficient. Meanwhile, military units are establishing surveillance systems for various facilities through CCTV, and it is necessary to detect smoking near ammunition stores or non-smoking areas to prevent fires and explosions. In this paper, by reflecting experimentally optimized numerical values such as activation function and learning rate, we did the detection of smoking pictures and non-smoking pictures in two cases. As experimental data, data was constructed by crawling using pictures of smoking and non-smoking published on the Internet, and a machine learning library was used. As a result of the experiment, when the learning rate is 0.004 and the optimization algorithm Adam is used, it can be seen that the accuracy of 93% and F1-score of 94% are obtained.