• Title/Summary/Keyword: Forest vegetation

Search Result 1,966, Processing Time 0.032 seconds

The Vegetation Structure of Beomseom Islet, Jeju-do (제주도 범섬의 식생구조)

  • Kim Chan-Soo;Song Gwan-Pil;Moon Myong-Ok;Kang Young-Jae;Byun Gwang-Ok;Kim Moon-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.3
    • /
    • pp.201-210
    • /
    • 2005
  • This study was conducted to prepare efficient and systematic measures for nature conservation and management in Beomseom Islet, and to provide for basic data to investigate the process of vegetation change in the future. The vegetation of Beomseom Islet was classified to six vegetation type; i.e., Miscanthus sinensis community, Pinus thunbergii community, Iythophyte vegetation, evergreen broad leaf community, shrub community, and Pseudosasa japonica community. The size of each vegetation type was 40,230 $m^2$ ($23.3\%$) for shrub community, 39,366 $m^2$($22.8\%$) for Iythophyte vegetation, 30,012 $m^2$ ($17.4\%$) fur Pinus thunbergii community, 29,853 $m^2$ ($17.3\%$) for Miscanthus sinensis community, 5,564 $m^2$ ($3.2\%$) for evergreen broad leaf community, and 3,325 $m^2$ ($1.9\%$) for Pseudosasa japonica community. The area of non-vegetated sea cliff Bone that composed of bare rocks is 24,246 $m^2$($14.1\%$). We estimated that these distribution patterns of vegetation were the result of various environmental factors such as the steepness of slope and shallowness of soil as well as the cultivation of exotic plants causing disruption of native vegetation.

Phytosociological Community Type Classification and Stand Structure in the Forest Vegetation of Hongdo Island, Jeollanam-do Province (전라남도 홍도 산림식생의 식물사회학적 군락유형분류와 임분 구조)

  • Kim, Ho-Jin;Shin, Jae-Kwon;Lee, Cheul-Ho;Yun, Chung-Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.3
    • /
    • pp.245-257
    • /
    • 2018
  • The study was carried out to discover the forest vegetation structure in Hongdo Island, Jeonnam province. Vegetation data were collected by total of forty one quadrate plots using Z-M phytosociological method from June to August in 2017, and analyzed by vegetation classification, mean importance value and species diversity. As a result of vegetation type classification, Castanopsis sieboldii community group was classified at a top level of vegetation hierarchy. In the level of community, it was classified into Neolitsea sericea community and Carpinus turczaninowii community. N. sericea community was subdivided into Ficus erecta group(Vegetation unit 1) and Arisaema ringens group(VU 2). C. turczaninowii community was subdivided into Fraxinus sieboldiana group(VU 3) and C. turczaninowii typical group(VU 4). Therefore, it was classified into total of four vegetation units(one community group, three communities and four groups). As a result of mean importance value, Castanopsis sieboldii was the highest in VU 1, VU 2, VU 4, and C. turczaninowii in VU 4, respectively. In case of species diversity, VU 3 showed the highest among four units in species diversity index. In conclusion, the forest vegetation of Hongdo Island was classified into four units and seven species groups. Hongdo Island could be conclusively managed by community ecological approach for the units and groups. Also it was considered that a research for the succession to the evergreen broad-leaved forest should be more intensively proceeded near future.

A Study on Vegetation Structure of Cultural Landscape Forest of Dongbaek Island, Busan (부산광역시 동백섬 문화경관림 식생구조 특성 연구)

  • Kim, Kyungwon;Lee, Kyong-Jae;Choi, Jin Woo;Yeum, Jung Hun;Ahn, In Su
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.205-214
    • /
    • 2014
  • The purpose of this study is to suggest vegetation management method as the cultural landscape forest of Dongbaek Island which is the district monument. The study area was $20,000m^2$ around the peak area in management as the nature sabbatical area. Vegetation structure type was classified with the criteria of topography, vegetation, management and the management plan was derived from the vegetation structure analysis according to the types. Vegetation structure types were Management-Camellia japonica, Non-management-Eurya japonica, Non-management-Rugged area-Eurya japonica. As the result of vegetation structure, Pinus thunbergii dominated in canopy layer and Camellia japonica and Eurya japonica dominated in Type I and in Type II and III, respectively. Especially, Machilus thunbergii as the climax species in the warm temperate forest were distributed centering shrubs, and as the result of distribution of diameter of breast height, middle size of Celtis sinensis and Machilus thunbergii were distributed in type I, II. Machilus thunbergii were distributed in range of 4 to 44 individuals through the all types. Mean age of canopy layer was 66 year-old and sub-canopy layer was 22.9 year-old. Shanon's species diversity was analysed from 0.5472 to 0.8646. As the vegetation management direction of Dongbaek island, managed Camellia japonica forest was suggested to maintain the regular management and non-managed Eurya japonica forest was required to remove the Eurya japonica and plant the Camellia japonica. In case of non managed Eurya japonica forest in rugged area, vegetation succession was required to laurel forest.

Vegetation Composition and Structure of Sogwang-ri Forest Genetic Resources Reserve in Uljin-gun, Korea (울진 소광리 산림유전자원보호구역 산림식생의 조성 및 구조)

  • Kim, Hak-Yun;Cho, Hyun-Je
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.2
    • /
    • pp.188-201
    • /
    • 2017
  • Based on a total of 272 vegetation data collected by the ZM school phytosociological study method, the composition and structural characteristics of the forest vegetation in the Sogwang-ri forest genetic resource reservoir located in Uljin-gun, Gyeongsangbuk-do were compared using the table comparison method and the TWINSPAN method, And their ecological characteristics were analyzed. The types of forest vegetation were classified into 7 types, and it was divided into two major groups, 'Slope and Ridge type', which characterized by Quercus mongolica, Pinus densiflora for. erecta, Lespedeza bicolor etc. and 'valley and concave slope', which characterized by Cornus controversa, Fraxinus mandshurica, Morus bombycis, Hydrangea serrata for. acuminata etc. The hierarchy of the vegetation unit was 2 community groups, 4 communities, and 6 subcommunities. The structural characteristics such as the total percent cover, species importance value, species diversity of the constituent species per unit area($/100m^2$) of each type of forest vegetation were also identified. In order to understand the spatial distribution of forest vegetation, 1/5,000 large-scale physiognomic vegetation map was created by the uppermost dominant species. The composition and structural characteristics of Geumgang pine(P. densiflora for. erecta) forest, which is a core community of protected area by natural and anthropogenic influences, appear as a subtype of Quercus mongolica forest, which is a potential natural vegetation, Appropriate maintenance measures seemed urgently needed.

Classification and Stand Characteristics of Subalpine Forest Vegetation at Hyangjeukbong and Jungbong in Mt. Deogyusan (덕유산 향적봉 및 중봉 아고산대의 산림식생유형분류와 임분 특성)

  • Han, Sang Hak;Han, Sim Hee;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.48-62
    • /
    • 2016
  • This study was conducted to classify forest vegetation structure and stand feature of Mt. Deogyusan National Park from Hyangjeukbong to Jungbong, 48 plots were surveyed. The type classification of the vegetation structure was performed with Z-M phytosociological method. As a result, Quercus mongolica community group was classified into the Picea jezoensis community, Carpinus cordata community and Tilia amurensis community in community unit. P. jezoensis community was subdivided into Deutzia glabrata group and Viburnum opulus var. calvescens group in group unit. D. glabrata group was subdivided into Acer mandshuricum subgroup and Ribes mandshuricum subgroup and V. opulus var. calvescens group was subdivided into Hemerocallis dumortieri subgroup and Prunus padus subgroup in subgroup unit. In the result of estimating the importance value, it constituted Q. mongolica (23.9%), Abies koreana (14.7%), Taxus cuspidata (10.2%), P. jezoensis (8.2%) and Betula ermanii (7.4%) in tree layer. It constituted Acer komarovii (18.6%), Acer pseudosieboldianum (18.4%) and Q. mongolica (8.9%) in subtree layer. It constituted Rhododendron schlippenbachii (20.7%), A. pseudosieboldianum (17.4%) and Symplocos chinensis (8.5%) in shrub layer. Indicator species analysis of vegetation unit 1 was consisted of Hydrangea serrata, Fraxinus mandshurica and D. glabrata that species prefer moist valley in subalpine or rocks. In the results of analyzing the species diversity, vegetation unit 1, 4 and 5 represented that there were different and complex local distributions. As in the similarity between the vegetation units, the vegetation units 1, 2, 3 and 4 represented high with 0.5 or above. It represented that there wasn't no differences on composition species in vegetation units.

Community Ecological Characteristics of Juniperus chinensis L. Forest in South Korea (남한지역 향나무림의 군락생태학적 특성)

  • Shin, Jae-Kwon;Kim, Hye-Jun;Shin, Hak-Sub;Chung, Jae-Min;Yun, Chung-Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.587-600
    • /
    • 2013
  • Juniperus chinensis forest were classified into 1 community group, 2 communities, 4 groups, 6 subgroups, and 7 vegetation units by phytosociological analysis(the method of ZM schools) with 79 vegetation data in south korea. By NMS analysis it appeared at first axis (13.8%) and second axis (69%) and comprehensive explanatory power was 31%. It was shown clearly in Donggang region, the East sea region and the Ulleungdo region. In INSPAN(Indicator species Analysis) of vegetation unit, 89 species were analyzed significantly. According to result of species diversity, evenness, dominance value, interspecific-competition and other related analyses for vegetation unit, the species diversity of vegetation unit 4 showed the lowest value 0.667, while the value of vegetation unit 6 showed the highest value 1.174. The dominance value of vegetation unit 7 showed the lowest value 0.163 and most vegetation units are on about 0.7, while the value of vegetation unit 1 showed highly above 0.8.

Study of Vegetation Structure about Shrine Forest in Jirisan National Park with Regard to Global Warming (지구온난화를 고려한 지리산 국립공원 내 사찰림의 식생구조 연구)

  • Lee, Sung-Je;Ahn, Young-Hee
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1863-1879
    • /
    • 2014
  • This study aims at classifying and interpreting on the shrine forest vegetation located in Jirisan national park affiliated to an ecotone in southern part of Korea, foreseeing a vegetation change based on composition species and dominant species on canopy, and proposing the direction of vegetation management. The shrine forests were classified into the 7 community units as Chamaecyparis obtusa-Cryptomeria japonica afforestation, Pinus densiflora community, Pinus rigida afforestation, Quercus variabilis-Quercus serrata community, Zelkova serrata-Kerria japonica for. japonica community, Phyllostachys bambusoides forest, Camellia japonica community. This research is also expatiated on the analogous results of ordination analysis with phytosociological analysis. The constituents of deciduous broad-leaved forest in the warm temperate zone were appeared in the most vegetations. It emerged less that the constituents of evergreen broad-leaved forest in the warm-temperate zone and deciduous broad-leaved forest in the cold-temperature zone. The life form analyses were made use with the two ways: appearance species in total communities and each community. The species diversity of shrine forests is declined because the high dominances of Sasa borealis and Pseudosasa japonica emerged in the shrub and herb layers. These shrine forests will be succession to Q. variabilis-Q. serrata community as the representative vegetation of deciduous broad-leaved forest in the warm-temperate zone, owing to the temperature rise by global warming, and an evergreen broad-leaved forest will be able to be also formed if a temperate rise will be continued. The one of the artificial management of shrine forests is to consider the introduction of the constituents of evergreen broad-leaved forest in the warm-temperate zone.

Some Proposed Indices of Structural Regeneration of Secondary Forests and Their Relation to Soil Properties

  • Aweto, Albert Orodena
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.292-303
    • /
    • 2021
  • Studies that relate the structure of tropical regrowth vegetation to soil properties are generally lacking in the literature. This study proposes three indices for assessing the structural regeneration of secondary forests. They are: (1) the tree diameter class, (2) the plant life form and (3) the woody/herbaceous plants ratio indices. They were applied to assess the regeneration status of forest regrowth vegetation (aged 1-10 years), derived savanna regrowth vegetation in south western Nigeria, and to secondary forests in different stages of succession in Columbia and Venezuela, Bolivia, Mexico in South and Central America and semi-arid savanna in Ethiopia and seasonal deciduous forest successional stages in India. In all the cases, the indices increased with increasing age of regrowth vegetation and hence, with increasing structural complexity of regenerating vegetation. The tree diameter class index increased from 32.1% in a 9-year secondary forest to 69.0% in an 80-year-old secondary forest in Columbia and Venezuela and from 0.4% in a 1-year fallow to 20.9% in 10-year regrowth vegetation in southwestern Nigeria. In semi-arid savanna in northern Ethiopia, the woody/herbaceous plants ratio index increased from 18.1% in a 5-year protected grazing enclosure to 75.1% in 15-year protected enclosure, relative to the status of 20-year enclosure. The indices generally had correlations of 0.6-0.90 with species richness and Simpson's/Margalef's species diversity, implying that they are appropriate measures of ecosystem development over time. The proposed indices also had strong and positive correlations with soil organic carbon and nutrients. They are therefore, significant indicators of fertility status.

Community Distribution on Mountain Forest Vegetation of the Gyebangsan Area in the Odaesan National Park, Korea (오대산 국립공원 계방산 일대 삼림식생의 군락분포에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Kang, Eun-Ok;Yun, Chil-Sun;Lim, Jin-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.135-145
    • /
    • 2014
  • The mountain forest vegetation of Gyebangsan (1,577 m) in Odaesan National Park is classified into deciduous broad-leaved forest, mountain valley forest, coniferous forest, subalpine coniferous forest, subalpine deciduous forest, plantation forest, and other vegetation which includes Actinidia argute community and agricultural land. As for the number of communities distributed in the each forest vegetation which were categorized by the physiognomy classification, deciduous broad-leaved forest had 33 communities, mountain valley forest 41 communities, coniferous forest 8 communities, subalpine coniferous forest 4 communities, subalpine deciduous forest 2 communities, plantation forest 6 communities and other vegetation 4 communities. Regarding the distribution rate of communities in the vegetation, in the deciduous broad-leaved forest. Quercus mongolica community accounted for 80.226% with $30,909,942.967m^2$, followed by Quercus variabilis community of 2.771% with $1,067,479.335m^2$. 55.463% of deciduous broad-leaved forest in the Gyebangsan had Quercus mongolica as a dominant or second dominant species. In the mountain valley forest, Fraxinus rhynchophylla - Juglans mandshurica community accounted for 10.955%. And there were ten mixed communities having Fraxinus rhynchophylla and upper layer at a similar level of coverage, taking up 32.776%. In the coniferous forest, Pinus densiflora and the community living with Pinus densiflora accounted for 100%, showing that the coniferous forest has the community with Pinus densiflora as a dominant species at upper layer. For other vegetation, subalpine coniferous forest had a total of four communities including Abies holophylla - Quercus mongolica community, and accounted for 4.980% of vegetation area of Odaesan National Park. Two communities including Betula ermani - Cornus controversa community were found in the subalpine deciduous forest, taking up 0.006% of total vegetation area of Odaesan National Park. Regarding plantation forest, Larix leptolepis was planted the most with 51.652%, followed by Betula platyphylla var. japonica with 38.975%, and Pinus koraiensis with 7.969%. These three species combined accounted for 98.565%. In conclusion, the forest vegetation found in the Gyebangsan of Odaesan National Park has Quercus mongolica as a dominant species at the top layer. A lot of other communities related with this species are expected to be quickly replaced due to vegetation succession and climatic causes. Therefore, Quercus mongolica is expected to become the main species in the deciduous broad-leaved forest, Fraxinus rhynchophylla, Juglans mandshurica and Fraxinus mandshurica in the mountain valley forest. Around the border line between deciduous broad-leaved forest and mountain valley forest, highly humid valley area is expected to be quickly taken up by Cornus controversa and Fraxinus mandshurica, and the slope area by Quercus mongolica. However, in the subalpine coniferous forest, the distribution rate of deciduous broad-leaved trees is expected to increase due to climate warming.

Vegetation Structure and Ecological Restoration of Disturbed Forest due to Artificial Plant (인공식재에 의해 교란된 산림의 식생구조 및 생태적 복원기법)

  • Bae, Byung-Ho;Yoon, Yong-Han;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.701-710
    • /
    • 2011
  • The purpose of this study is to investigate the vegetation structure and ecological restoration of disturbed forest due to artificial plant. To this end, 12 plots were set up and surveyed. The result analyzed considering mean importance percentage(M.I.P) showed that the types were divided into three groups which are artificial planted forest type(three plots), natural forest-artificial planted forest type(four plots), natural forest type(five plots). Dominant proportion of artificial planted species were as follows: artificial planted forest type was over 60%, natural forest-artificial planted forest types were 14~49%. The range of Shannon's index of all associations was from 0.7131 to 0.7771(natural forest-artificial planted forest > natural forest > artificial planted forest). Also we suggested restoration method of vegetation for ecological value as follow: Control of density considering step and Remove of Pinus koraiensis seedlings of understory layer and shurb layer.