• Title/Summary/Keyword: Forest stand

Search Result 760, Processing Time 0.032 seconds

Effects of Fertilizer on Growth, Carbon and Nitrogen Responses of Foliage in a Red Pine Stand

  • Kim, Choonsig;Ju, Nam-Gyu;Lee, Hye-Yeon;Lee, Kwang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • This study was to examine growth, carbon and nitrogen responses in foliage following forest fertilization in a red pine stand. Two types of fertilizer (N:P:K=113:150:37 kg $ha^{-1}$; P:K=150:37 kg $ha^{-1}$) were applied on late April 2011. Growth, carbon and nitrogen responses of foliage were monitored 3 times (July, September, November) after fertilization. Morphological growth responses (dry mass, leaf area, specific leaf area) with foliage age were not significantly (P > 0.05) affected by fertilizer application, while needle dry mass and leaf area of July were significantly lower in current-year-old than in one-year-old or two-year-old needles of September or November. Carbon concentration and content in foliage was little affected by fertilizer application compared with sampling month or needle age, while the NPK fertilizer produced high nitrogen concentration and content of foliage. The results indicate that nitrogen concentration and content in foliage may serve as an indicator of the nitrogen status by fertilization in a red pine stand.

Thinning Intensity Effects on Carbon Storage of Soil, Forest Floor and Coarse Woody Debris in Pinus densiflora Stands (간벌 강도가 소나무림의 토양, 낙엽층 및 고사목 탄소 저장량에 미치는 영향)

  • Ko, Suin;Yoon, Tae Kyung;Kim, Seongjun;Kim, Choonsig;Lee, Sang-Tae;Seo, Kyung Won;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • This study examined the change in carbon (C) storage of soil, forest floor and coarse woody debris (CWD) for different thinning intensities in Pinus densiflora stands 4 years after the treatment. Two study stands were located in Jeongseon (Stand 1) and Gwangneung Experiment Forest (Stand 2). Three plots for different thinning intensities based on stand density were established at each stand in 2008; control plot (0%), T20 plot (20%) and T30 plot (30%) in Stand 1 and control plot (0%), T39 plot (39%) and T74 plot (74%) in Stand 2, respectively. The C storage of soil (0-50 cm), forest floor and CWD was measured in 2012. Total C storage of T30 plot ($109.80t{\cdot}C{\cdot}ha^{-1}$) was significantly higher than that of control plot ($86.69t{\cdot}C{\cdot}ha^{-1}$) in Stand 1. In stand 2, total C storage of T74 plot ($97.02t{\cdot}C{\cdot}ha^{-1}$) was significantly higher than that of control plot ($72.04t{\cdot}C{\cdot}ha^{-1}$) and T39 plot ($63.25t{\cdot}C{\cdot}ha^{-1}$). Total C storage of the heaviest thinned plot was the highest in each study stand. Since this study examined initial effects of thinning on C storage of soil, forest floor and CWD, further studies would be necessary to evaluate the long-term effects.

Stem and Stand Taper Model Using Spline Function and Linear Equation (Spline 함수(函數)와 선형방정식(線型方程式)을 이용한 수간(樹幹) 및 임분간곡선(林分幹曲線)모델)

  • Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • One of the essential factors to estimate the stem and stand growth is to correctly portray a stem form (profile). It is also required to numerically approximate a stem form in order to dynamically grasp and represent a stand growth. A whole stem form seems to be a conical form but a stem outline at various positions tapers off differently. Accordingly it is difficult to model a whole stand form with single taper equation. A stem taper equation with different coefficients on each subinterval can be useful tools to accurately portray a stem form. This article presents the derivation method of individual stem taper curve using spline function. It is also in this paper aimed to study how a stand taper curve car, be derived from the population of single stem taper curve in a stand. These taper equations numerically formulated enable to dynamically represent and prognosticate the development process of a stand and prepare the foundation of variety on growth model study and rational forest planning model.

  • PDF

Prediction of Old-Growth Development in Second-Growth Hardwood Forests using Computer Simulation (Computer Simulation을 이용(利用)한 이차활엽수림(二次闊葉樹林)의 노숙림(老熟林) 발달예측(發達豫測))

  • Choi, Jung-Kee
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.502-512
    • /
    • 2000
  • Old-growth development for two different second-growth northern hardwood stands in the North America was evaluated with a computer simulation. The two sites compared were a representative 77 year old even-aged stand (Phelps) with heavy dominance by pole size classes, and an older uneven-aged stand with some existing old-growth structural features (Wildcat Creek). Each stand was evaluated in its natural progress toward old-growth structural conditions with stand structure, size distribution of live and dead trees, percent stand area in canopy gaps, and visual canopy profile and overhead view. The Phelps stand reached the minimum structural threshold for the old-growth stage after 74 years. Only 13 years was required for Wildcat Creek stand to reach the old-growth threshold. During the 45 years of simulation, the diameter distributions of both stands became broader and flatter. DBH distribution of dead trees had a general descending trend over the simulation in each stand. Gaps at Phelps were typically small after 45 years. Gap area at Wildcat Creek was somewhat more constant over the 45 years of simulation but a big gap was formed because of the death of several adjacent large trees.

  • PDF

Assessment on Forest Resources Change using Permanent Plot Data in National Forest Inventory (국가산림자원조사 고정표본점 자료를 활용한 산림자원변화 평가에 관한 고찰)

  • Yim, Jong-Su;Kim, Eun Sook;Kim, Chel Min;Son, Yeong Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.239-247
    • /
    • 2015
  • Since 2006, new national forest inventory in Korea has been restructured to assess current status and and monitor the changes in forest resources based on permanent sample plots. The objective of estimate this study is to assess changes in forest resources such as land use/cover categories and forest stand variables. For this study, permanent plot data were collected between 2006-2008 and 2011-2013 in Chungcheongbuk-do, respectively. In order to produce land use/cover change matrix which plays an important role as an activity data for estimating GreenHouse Gas inventory, permanent plots were classified into six land use/cover categories. Additionally, matrixes for assessing the changes in age class and dominant tree species can provide more detailed information. For forest stand variables(tree density, basal area, growing stock, mean diameter at breath height, and mean height), their growth and change were assessed. The periodic annual growth ratios for tree density and basal area were slightly declined whereas that of growing stock was estimated to be about 3.7%. The uncertainty of changes in forest stand variables is less than 5%, except for tree density (RSE: 58%). The variation of tree density is relatively high compared to the other variables.

Effects of Stand Age Classes on Biomass Expansion Factors and Stem Densities in Chamaecyparis obtusa Plantations (편백 조림지에서 영급이 바이오매스 확장계수와 줄기밀도에 미치는 영향)

  • Lee, Young Jin;Lee, Mi Hyang;Lee, Kyeong Hak;Son, Young Mo;Seo, Jeong Ho;Park, In Hyeop;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.1
    • /
    • pp.50-54
    • /
    • 2006
  • Biomass expansion factors and stem density values were commonly used in converting stand volumes into total carbon stocks for the purpose of national inventories of greenhouse gas emissions and carbon sequestration. The objective of this study was to examine the influence of stand age classes on aboveground and total biomass expansion factors, and stem density values in Chamaecyparis obtusa species. A total of 25 representative sample trees based on the three different stand age classes were destructively sampled to measure green weights and dry weights of the major four(root, stem, branch and foliage) portions of C. obtusa species grown in Jangseung-gun of southern Korea. According to the results of this study, as stand age classes increase, total biomass expansion factors tended to be decreased with the ranges from 3.64 to 1.44, while the stem density values tended to be slightly increased with the ranges from $0.35(g/cm^3)$ to $0.44(g/cm^3)$. There were statistically significant differences in biomass expansion factors and stem density values between stand age classes, but became nearly constant after 30 years old for C. obtusa species. This information could be very useful to improve a national-scaled inventory of greenhouse gas emissions and carbon sequestration for the C. obtusa species by applying different biomass expansion factors and stem density values.

Regeneration and Tending Practices for Natural Mixed Stands of Quercus mongolica-Abies holophylla II. Prediction of Futures Stand Structure using Rate of Increment (신갈나무-전나무 천연(天然) 혼효임분(混淆林分)의 갱신(更新) 및 무육방법(撫育方法) II. 생장률(生長率)을 이용(利用)한 미래(未來) 임분구조(林分構造)의 예측(豫測))

  • Shin, Man Yong;Lim, Joo Hoon;Chun, Young Woo;Ko, Yung Zu
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.2
    • /
    • pp.146-155
    • /
    • 1992
  • The natural mixed stand in Jindong-Ri, according to a recent study, showed the possibility of selection cutting as a silvicultural system based on the stand structure such as DBH distribution and height distribution. However, volume structure per DBH class of this stand had not a mature stand of selection cutting. In this study, wherefore, the rate of increment for DBH and volume was used to predict the future stand structure including volume distribution per DBH class. The possibility of selection cutting was then discussed using the future stand structure. From the prediction of future stand structure for 30 years per every 10 years, it could be concluded that the stand will be induced to selection cutting forest because of enough number of trees in objective DBH class and above, total volume per hectare, and the volume of large DBH class which can be harvested every year. However, this stand still did not show the structure of typical selection cutting which has the rate of 1 : 2 : 7 in the number of trees per hectare and the volume rate of 5 : 3 : 2 for large, medium, and small DBH class. This problem could be improved by appropriate silvicultural treatments.

  • PDF

Growth Characteristics of Trees following Different Types of Cutting in Quercus acutissima Stand (상수리나무 임분 내에서 벌채 유형에 따른 조림목의 생장 특성)

  • Shin, Yu-Seung;Song, Sun-Hwa;Yang, A-Ram;Hwang, Jaehong;Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1075-1083
    • /
    • 2014
  • The objective of this study was to evaluate the effect of cutting types on microclimate and growth characteristics of afforested tree in Quercus acutissima stand after different types of cutting. The difference in temperature reaching $5.2^{\circ}C$ was shown in between clear cutting and selective cutting treatments. On July and August days with temperatures more than $35^{\circ}C$ often appeared in clear cutting stand. The values of VPD in July and August were higher than those in other months. Maximum VPD of 3.99 kPa was shown in clear cutting stand on May 23 as a prolonged rainless days appeared. However, VPD in selective cutting stand always stayed under 3.0 kPa throughout growing season. A higher intensity was shown in clear cutting and strip clear cutting stands, reaching to more than $1,600{\mu}mol\;m^{-2}s^{-1}$ at midday on early August, while that in selective cutting stand stayed about 1,500. In relative growth rate selective cutting stand showed a significantly higher relative growth rate in plant height than those in other cutting stands (p<0.05). The number of leaf in current-year branches significantly increased in selective cutting stand, whereas no increase was shown in clear cutting and strip clear cutting stands (p<0.05). In addition, relative elongation rate of current year branch also showed higher values in selective cutting stand compared with that in strip clear cutting stand (p<0.05). However, leaf mass per unit area (LMA) was higher in order of strip clear cutting, clear cutting, and selective cutting stands. From these results it is concluded that environmental conditions in clear cutting and strip clear cutting stands during growing season are more stressful to afforested tree species, resulting in lower relative growth in plant height, elongation of current-year branches, and leaf number per branch compared with those in selective cutting stand. Consequently, more data must be accumulated in the field to find out best cutting type in plantation considering the adaptational characteristic of each tree species varies with species and life span of tree is long.

Recalculation of Forest Growing Stock for National Greenhouse Gas Inventory (국가 온실가스 통계 산정을 위한 임목축적 재계산)

  • Lee, Sun Jeoung;Yim, Jong-Su;Son, Yeong Mo;Kim, Raehyun
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.485-492
    • /
    • 2016
  • For reporting national greenhouse gas inventory in forest sector, the forest growing stock from the National Forest Inventory (NFI) system has used as activity data sources. The National Forest Inventory system was changed from rotation system by province to annual system by 5 years across the country. The forest growing stocks based on the new inventory system produced a different trend compared to the previous estimations. This study was implemented to recalculate previous forest growing stocks for time series consistency at a national level. The recalculation of forest growing stock was conducted in an overlap approach by the IPCC guideline. In order to support the more consistency data, we used calibration factors between applied stand volumes in 1985 and 2012, respectively. As a result, the time series of recalculated forest growing stock was to be consistency using the overlap approach and the calibration factor with the lower middle/middle site index. According to the applied overlap period, however, we will recalculate activity data using more complete data from national forest inventory system.