• Title/Summary/Keyword: Forest runoff

Search Result 189, Processing Time 0.032 seconds

Nitrogen, Phosphorus, and Organic Carbon Discharges in the Imgo Small Agricultural Watershed Catchment (임고천상류 소규모 농업유역에서 하천으로의 질소, 인 및 유기물의 부하)

  • Chung, Jong-Bae;Kim, Min-Kyeong;Kim, Bok-Jin;Park, Woo-Churl
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.70-76
    • /
    • 1999
  • Since high concentrations of N, P, and organic C cause the excessive eutrophication in water systems, the control of nutrient export from agricultural nonpoint sources has become important. This study was conducted to estimate discharges of N, P, and organic C from a small agricultural watershed of the upper Imgo stream in Youngchun, Kyongbuk. Of the total area(1.420ha), 25% was agricultural land including paddy, upland and orchards and most of the remainder was forest. The resident population in the watershed was 194 in 80 households and relatively small numbers of livestocks including cow were raised. Mean concentrations of nutrients in the stream water were 4.95, 0.80, 6.72, 0.07 and 2.52mg/L for $NO_3-N$, $NH_4-N$, Total N, Total P and COD respectively. Annual discharges in 1997 were 28,991kg of $NO_3-N$. 3,010kg of $NH_4-N$, 37,006kg of Total N. 590kg of Total P, and 29,138kg of COD. There was a strong positive relationship between stream flow and precipitation, and also most of the nutrient discharges occurred in the rainy season (May to August). Since there was no any other industries in the watershed, agricultural practices and sewage from the resident households, forest runoff and livestock wastes were the major sources of NPS discharges. A combination of management options, including management of soil erosion and fertilizer application, could lead to reductions in nutrient exports.

  • PDF

Nitrogen Budgets for South Korea in 2005 (2005년 대한민국 질소 유입 및 유출 수지)

  • Yun, Dong-Min;Park, Sin-Hyung;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.97-105
    • /
    • 2008
  • Nitrogen budgets in Korea in 2005 were estimated using a mass balance approach. Major nitrogen fluxes were divided into three sections: cities, agricultural area, and forest. Nitrogen inputs were chemical and biological fixation, dry and wet deposition, imported food and feed, while crop uptake, volatilization, denitrification, leaching, runoff, and forest consumption were nitrogen outputs. Non-point source(NPS) pollution budgets were also estimated by mass balance approach. Annual total nitrogen inputs budgets were 1,442,254 ton$\cdot$yr$^{-1}$, and outputs were 814,415 ton$\cdot$yr$^{-1}$. Approximately 19.4% of nitrogen input leaked to river and seawater as NPS pollution. It contains nitrogen input 21 percent more than the previous research in 2002. Especially the change of government plans affect nitrogen budget. As a result, in the output field, the whole nitrogen amount due to landfill reduce from 20 percent to less than 1 percent.

Nitrogen Budget of South Korea in 2008: Evaluation of Non-point Source Pollution and $N_2O$ Emission (2008년도 대한민국 질소수지 연구: 비점오염증가 및 $N_2O$발생량산정)

  • Nam, Yock-Hyoun;An, Sang-Woo;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • The main objective of this research was to estimate Nitrogen budget of South Korea in 2008. Input-output budgets for nitrogen fluxes were categorized into three sections: cities, agricultural area, and forest. Chemical and biological fixation, dry and wet deposition, imported food and feed were used as the nitrogen input. Crop uptake, volatilization, denitrification, leaching, runoff, and forest consumption were used as the nitrogen outputs. Annual total nitrogen input was 1,294,155 ton/yr, and output was 632,228 ton/yr. Comparison with a previous research in 2005 indicates that nitrogen input was decreased by 1.9% due to the decrease in nitrogen fertilizer while nitrogen output was decreased by 6.3%. Non-point source (NPS) pollution was also estimated by mass balance approach, which increased by 22% than the previous research in 2005. The emission of nitrous oxide ($N_2O$) caused by denitrification was newly examined in this research. About 8,289 ton/yr of $N_2O$ was released from agriculture area and domestic wastewater treatment plant.

Management Strategies to Conserve Soil and Water Qualities in the Sloping Uplands in Korea (한국의 경사지 밭의 토양 및 물의 보전 관리 전략)

  • Yang, Jae-E.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.435-449
    • /
    • 2010
  • Soils in the sloping uplands in Korea are subject to intensive land use with high input of agrochemicals and are vulnerable to soil erosion. Development of the environmentally sound land management strategy is essential for a sustainable production system in the sloping upland. This report addresses the status of upland agriculture and the best management practices for the uplands toward the sustainable agriculture. More than 60% of Korean lands are forest and only 21% are cultivating paddy and upland. Uplands are about 7% of the total lands and about 62% of the uplands are in the slopes higher than 7%. Due to the site-specificity of the upland, many managerial and environmental problems are occurring, such as severe erosion, shallow surface soils with rocky fragments, and loadings of non-point source (NPS) contaminants into the watershed. Based on the field trials, most of the sloping uplands were classified as Suitability Class III-V and the major limiting factor was slope and rock fragments. Due to this, soils were over-applied with N fertilizer, even though N rate was the recommendation. This resulted in decreases in yield, degradation of soil quality and increases in N loading to the leachate. Various case studies drew management practices toward sustainable production systems. The suggested BMP on the managerial, vegetative, and structural options were to practice buffer strips along the edges of fields and streams, winter cover crop, contour and mulching farming, detention weir, diversion drains, grassed waterway, and slope arrangement. With these options, conservation effects such as reductions in raindrop impact, flow velocity, runoff and sediment loss, and rill and gully erosion were observed. The proper management practice is a key element of the conservation of the soil and water in the sloping upland.

Assessment of water quality variations under non-rainy and rainy conditions by principal component analysis techniques in Lake Doam watershed, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Heo, Woomyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • This study was based on water quality data of the Lake Doam watershed, monitored from 2010 to 2013 at eight different sites with multiple physiochemical parameters. The dataset was divided into two sub-datasets, namely, non-rainy and rainy. Principal component analysis (PCA) and factor analysis (FA) techniques were applied to evaluate seasonal correlations of water quality parameters and extract the most significant parameters influencing stream water quality. The first five principal components identified by PCA techniques explained greater than 80% of the total variance for both datasets. PCA and FA results indicated that total nitrogen, nitrate nitrogen, total phosphorus, and dissolved inorganic phosphorus were the most significant parameters under the non-rainy condition. This indicates that organic and inorganic pollutants loads in the streams can be related to discharges from point sources (domestic discharges) and non-point sources (agriculture, forest) of pollution. During the rainy period, turbidity, suspended solids, nitrate nitrogen, and dissolved inorganic phosphorus were identified as the most significant parameters. Physical parameters, suspended solids, and turbidity, are related to soil erosion and runoff from the basin. Organic and inorganic pollutants during the rainy period can be linked to decayed matters, manure, and inorganic fertilizers used in farming. Thus, the results of this study suggest that principal component analysis techniques are useful for analysis and interpretation of data and identification of pollution factors, which are valuable for understanding seasonal variations in water quality for effective management.

Classification of Hydrologic Soil Groups of Korean Soils Using Estimated Saturated Hydraulic Conductivity and Depth of Impermeable Layer (포화 수리전도도와 불투수층 깊이에 따른 우리나라 토양의 수문학적 토양군 분류)

  • Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Seo, Mijin;Zhang, Yongseon;Seo, Youngho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • Hydrologic soil group is one of the important factors to determine runoff potential and curve number. This study was conducted to classify the hydrologic soil groups of Korean soils by considering saturated hydraulic conductivity and depth of impermeable layer. Saturated hydraulic conductivity of Korean soils was estimated by pedotransfer functions developed in the previous studies. Most of paddy soils were classified as D type due to shallow impermeable layer and low saturated hydraulic conductivity in B soil horizon. For upland and forest, soils classified to A and D types increased compared with former classification method because underestimated permeabilities and overestimated drainages were corrected and rock horizon in shallow depth was regarded as impermeable layer. Soils in mountainous land showed the highest distribution in A type, followed by D type. More than 60 % of soils in mountain foot-slope, fan and valley, alluvial plains, and fluvio-marine deposits were classified to D type because of land use such as paddy and upland.

Evaluation of Applicability of SWAT-CUP Program for Hydrologic Parameter Calibration in Hardware Watershed (Hardware 유역의 수문매개변수 보정을 위한 SWAT-CUP 프로그램의 적용성 평가)

  • Sang Min, Kim
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.63-70
    • /
    • 2017
  • The purpose of this study was to calibrate the hydrologic parameters of SWAT model and analyze the daily runoff for the study watershed using SWAT-CUP. The Hardware watershed is located in Virginia, USA. The watershed area is $356.15km^2$, and the land use accounts for 73.4 % of forest and 23.2 % of pasture. Input data for the SWAT model were obtained from the digital elevation map, landuse map, soil map and others. Water flow data from 1990 to 1994 was used for calibration and from 1997 to 2005 was for validation. The SUFI-2 module of the SWAT-CUP program was used to calibrate the hydrologic parameters. The parameters were calibrated for the highly sensitive parameters presented in previous studies. The P-factor, R-factor, $R^2$, Nash-Sutcliffe efficiency (NS), and average flow were used for the goodness-of-fit measures. The applicability of the model was evaluated by sequentially increasing the number of applied parameters from 4 to 11. In this study, 10-parameter set was accepted for calibration in consideration of goodness-of-fit measures. For the calibration period, P-factor was 0.85, R-factor was 1.76, $R^2$ was 0.51 and NS was 0.49. The model was validated using the adjusted ranges of selected parameters. For the validation period, P-factor was 0.78, R-factor was 1.60, $R^2$ was 0.60 and NS was 0.57.

Evaluation of Runoff from Forest Watershed with Different Vegetation Using GeoWEPP Model (GeoWEPP 모델을 이용한 임상별 유출특성 평가)

  • Choi, Jae-Wan;Shin, Min-Hwan;Shin, Ki-Sik;Lee, Jae-Woon;Cheon, Se-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1258-1262
    • /
    • 2010
  • 현재 비점오염원의 정량화를 위하여 정부에서는 지목별 모니터링을 통하여 원단위를 산정하고 있으며, 이를 이용해 수질개선을 위한 수질오염총량관리제를 더욱 효과적으로 운영 평가하기 위한 노력을 하고 있다. 특히, 전 국토의 70% 이상을 차지하고 있는 산림에서 발생되는 유출수에 대한 특성을 파악하는 것이 중요하다. 보통 산림 유출 특성은 모니터링을 수행하여 파악하는 것이 가장 정확한 방법이지만, 지형 작물 시간 강우 패턴 등의 다양한 조건에서 모니터링을 수행하는 것이 어렵다. 또한 지점선정 장비구입 인건비 등 많은 비용이 요구되어 모델링을 통해 시 공간적으로 유출 특성을 평가하고자 하는 연구들이 활발히 진행 중이다. 본 연구는 GIS에서 WEPP 모형의 구동이 가능하게 된 GeoWEPP 모형을 이용하여 활엽수림 침엽수림 혼효림에서 강우시 발생하는 유출량을 모의하여 실측 유출량과의 비교 평가를 통해서 GeoWEPP 모형의 정확성을 평가하는데 있다. 모델 평가를 위해 $R^2$와 Nash-Sutcliffe model Efficiency (NSE)를 사용하였다. 활엽수림 지점은 2009년 총 10개의 강우 발생으로부터 유출량이 산정되었는데, $R^2$와 NSE는 각각 0.98와 0.87로 나타났다. 침엽수림 지점은 14개의 강우 발생시 산정된 유출을 이용하여 모델을 평가하였는데, $R^2$와 NSE가 각각 0.91와 0.90으로 나타났다. 혼효림 지점은 총 10개의 강우 발생시 산정된 유출을 이용하여 모델을 평가한 결과 $R^2$와 NSE가 각각 0.98와 0.94로 나타나 GeoWEPP 모델이 임상별 유출량을 잘 반영하는 것으로 나타났다. 본 연구 결과에서 보이는 바와 같이 GeoWEPP 모형이 임상별 유출특성을 매우 정확하게 예측할 수 있다고 판단된다.

  • PDF

Studies on Soil Conservation Effects of the Straw-mat Mulching (III) -Effects of the Mat Structures and Its Practicality- (볏짚거적덮기공법(工法)의 사방효과(砂防效果)에 관(關)한 연구(硏究)(III) -거적 밀도(密度)의 영향(影響) 및 공법(工法)의 실용성(實用性)-)

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 1975
  • Eroded sloping faces in hillsides including cut-bank slopes are liable to both surface erosion and land-slides and the key to control of these form of erosion lies with drainages of excessive run-off and dense vegetation establishment including surface mulching on the slopes. Micro-plots having $1.6m^2$ (1 metre in width and 1.6 metres in slope length, and 1:1.2 in gradient) of banking slopes on coarse sand soil are used to establish the order of magnititude of the difference in controlling of soil erosion and water runoff, and in rating of survival, performed on the repetetions of three-experiment plots consisted of such three levels as 90% (Dense), 70% (Moderate), and 50% Sparse of the density of the coarse straw-mat mulchings. The main results obtained may be summarized as follows: 1. The rates of surface runoff are calculated as 13.13% from the dense mulchings, 14.21% from the moderate mulchings, and 15.57% from the sparse mulchings respectively. 2. The total amounts of soil loss are measured as about 1.24 tons/ha. from the dense mulchings, about 1.33 tons/ha. from the moderate mulchings, and about 1.44 tons/ha. from the sparse mulchings respectively. The amounts of soil loss under these treatments are much lower than the standard of erosion in USDA (1939 Bennet). 3. Average numbers of germination by treatment are counted as 80 seedlings at the dense mulchings. 132 at the moderates and 121 at the sparse respectively. Large numbers of seedling are suppressed and died during the growing at the dense mulchings due to mainly mechanical obstruction. 4. Coarse straw-mat having about 70% of coverage density is the most suitable mulches in both soil erosion control and vegetation establishment. 5. The method of coarse straw-mat mulching is the most recommendable measure for establishing the vegetation cover with less soil erosion on the denuded gentle slopes in hillsides at present in Korea.

  • PDF

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Yulmunchon Tributary of the Buk-Han River Basin (북한강 율문천 소유역에서 수질 변화와 농업활동에 의한 N, P 부하량)

  • Jung, Yeong-Sang;Yang, Jae E.;Park, Chol-Soo;Kwon, Young-Gi;Joo, Young-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.170-176
    • /
    • 1998
  • Nitrogen and phosphorus loads from an agricultural watershed of the Yulmun-chon tributary in the Buk-Han River Basin were quantified based on total amounts of water stream flow. The water quality and soil loss were estimated. Levels of the stream were recorded automatically using the water level meter. The flow velocities, along with the cross-sectional areas of the riverbed, were measured to estimate total amounts of water flow at three monitoring sites in this tributary. Water samples were collected at nine sites with two weeks interval from May to August and analyzed for the water quality parameters. Amounts of soil loss were estimated by the USLE. The size of the Yulmunchon watershed was 3,210 ha, of which paddy and upland soil areas were composed about 41%. The total amounts of soil loss from the watershed areas were estimated to be $13,273Mg\;year^{-1}$, showing 53%, 46% and 0.7% of the soil loss ratio from upland, forest, and paddy areas, respectively. Electrical conductivities and Nitrogen concentrations of the stream water were higher in the lower watershed area than in the upper area. Increments of N were higher for $NO_3-N$ than $NH_4-N$. Nitrate nitrogen was the major N form to pollute the water due to the agricultural activity. Total runoff was about 72% of the total precipitation in the watershed. The maximum loads of T-N and T-P due to the runoff were estimated to be 1,500 and $5kg\;day^{-1}$, respectively. Concentrations of $NO_3-N$ and $NH_4-N$ in the runoff were 13.5 and 1.8 times higher than those in precipitation. The N loads were mainly from soil loss, application of fertilizer, and livestock wastes, which were 52% of total N load. Results demonstrated that reduction of fertilizer use and the soil loss would be essential for water quality protection of the agricultural watershed.

  • PDF