• Title/Summary/Keyword: Forest fire Weather Index(FWI)

Search Result 4, Processing Time 0.018 seconds

Development of Fire Weather Index Model in Inaccessible Areas using MOD14 Fire Product and 5km-resolution Meteorological Data (MODIS Fire Spot 정보와 5km 기상 재분석 자료를 활용한 접근불능지역의 산불기상위험지수 산출 모형 개발)

  • WON, Myoung-Soo;JANG, Keun-Chang;YOON, Suk-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.189-204
    • /
    • 2018
  • This study has developed a forest fire occurrence probability model for inaccessible areas such as North Korea and Demilitarized Zone and we have developed a real-time forest fire danger rating system that can be used in fire-related works. There are limitations on the research that it is impossible to conduct site investigation for data acquisition and verification for forest fire weather index model and system development. To solve this problem, we estimated the fire spots in the areas where access is impossible by using MODIS satellite data with scientific basis. Using the past meteorological reanalysis data(5㎞ resolution) produced by the Korea Meteorological Administration(KMA) on the extracted fires, the meteorological characteristics of the fires were extracted and made database. The meteorological factors extracted from the forest fire ignition points in the inaccessible areas are statistically correlated with the forest fire occurrence and the weather factors and the logistic regression model that can estimate the forest fires occurrence(fires 1 and non-fores 0). And used to calculate the forest fire weather index(FWI). The results of the statistical analysis show that the logistic models(p<0.01) strongly depends on maximum temperature, minimum relative humidity, effective humidity and average wind speed. The logistic regression model constructed in this study showed a relatively high accuracy of 66%. These findings may be beneficial to the policy makers in Republic of Korea(ROK) and Democratic People's Republic of Korea(DPRK) for the prevention of forest fires.

Spring Forest-Fire Variability over Korea Associated with Large-Scale Climate Factors (대규모 기후인자와 관련된 우리나라 봄철 산불위험도 변동)

  • Jeong, Ji-Yoon;Woo, Sung-Ho;Son, Rack-Hun;Yoon, Jin-Ho;Jeong, Jee-Hoon;Lee, Suk-Jun;Lee, Byung-Doo
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.457-467
    • /
    • 2018
  • This study investigated the variability of spring (March-May) forest fire risk in Korea for the period 1991~2017 and analyzed its relationship with large-scale climate factors. The Forest Weather Index (FWI) representing the meteorological risk for forest fire occurrences calculated based on observational data and its relationship with large-scale climate factors were analyzed. We performed the empirical orthogonal function (EOF) analysis on the spring FWI. The leading EOF mode of FWI accounting for about 70% of total variability was found to be highly correlated with total number of forest fire occurrences in Korea. The high FWI, forest fire occurrence risk, in Korea, is associated with warmer atmosphere temperature in midwest Eurasia-China-Korea peninsula, cyclonic circulation anomaly in northeastern China-Korea peninsula-northwest pacific, westerly wind anomaly in central China-Korea peninsula, and low humidity in Korea. These are further related with warmer sea surface temperature and enhanced outgoing longwave radiation over Western Pacific, which represents a typical condition for a La $Ni\tilde{n}a$ episode. This suggests that large-scale climate factors over East Asia and ENSO could have a significant influence on the occurrence of spring forest fires in Korea.

Development of a Gangwon Province Forest Fire Prediction Model using Machine Learning and Sampling (머신러닝과 샘플링을 이용한 강원도 지역 산불발생예측모형 개발)

  • Chae, Kyoung-jae;Lee, Yu-Ri;cho, yong-ju;Park, Ji-Hyun
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2018
  • The study is based on machine learning techniques to increase the accuracy of the forest fire predictive model. It used 14 years of data from 2003 to 2016 in Gang-won-do where forest fire were the most frequent. To reduce weather data errors, Gang-won-do was divided into nine areas and weather data from each region was used. However, dividing the forest fire forecast model into nine zones would make a large difference between the date of occurrence and the date of not occurring. Imbalance issues can degrade model performance. To address this, several sampling methods were applied. To increase the accuracy of the model, five indices in the Canadian Frost Fire Weather Index (FWI) were used as derived variable. The modeling method used statistical methods for logistic regression and machine learning methods for random forest and xgboost. The selection criteria for each zone's final model were set in consideration of accuracy, sensitivity and specificity, and the prediction of the nine zones resulted in 80 of the 104 fires that occurred, and 7426 of the 9758 non-fires. Overall accuracy was 76.1%.

A Study on the Development of Forest Fire Occurrence Probability Model using Canadian Forest Fire Weather Index -Occurrence of Forest Fire in Kangwon Province- (캐나다 산불 기상지수를 이용한 산불발생확률모형 개발 -강원도 지역 산불발생을 중심으로-)

  • Park, Houng-Sek;Lee, Si-Young;Chae, Hee-Mun;Lee, Woo-Kyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.95-100
    • /
    • 2009
  • Fine fuel moisture code (FFMC), a main component of forest fire weather index(FWI) in the Canadian forest fire danger rating system(CFFDRS), indicated a probability of ignition through expecting a dryness of fine fuels. According to this code, a rising of temperature and wind velocity, a decreasing of precipitation and decline of humidity in a weather condition showed a rising of a danger rate for the forest fire. In this study, we analyzed a weather condition during 5 years in Kangwon province, calculated a FFMC and examined an application of FFMC. Very low humidity and little precipitation was a characteristic during spring and fall fire season in Kangwon province. 75% of forest fires during 5 years occurred in this season and especially 90% of forest fire during fire season occurred in spring. For developing of the prediction model for a forest fire occurrence probability, we used a logistic regression function with forest fire occurrence data and classified mean FFMC during 10 days. Accuracy of a developed model was 63.6%. To improve this model, we need to deal with more meteorological data during overall seasons and to associate a meteorological condition with a forest fire occurrence with more research results.