• Title/Summary/Keyword: Forest fire Disaster

Search Result 148, Processing Time 0.031 seconds

Design and Implementation of Forest Fire Prediction System using Generalization-based Classification Method (일반화 기반 분류기법을 이용한 산불예측시스템 설계 및 구현)

  • Kim, Sang-Ho;Kim, Dea-Jin;Ryu, Keun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.12-23
    • /
    • 2003
  • The expansion of internet and the development of communication technology have brought about an explosive increasement of data. Further progress has led to the increasing demand for efficient and effective data analysis tools. According to this demand, data mining techniques have been developed to find out knowledge from a huge amounts of raw data. This paper suggests a generalization based classification method which explores rules from real world data appearing repeatedly. Also, it analyzed the relation between weather data and forest fire, and efficiently predicted through it as a prediction model by applying the suggested generalization based classification method to forest fire data. Additionally, the proposed method can be utilized variously in the important field of real life like the analysis and prediction on natural disaster occurring repeatedly, the prediction of energy demand and so forth.

  • PDF

A Study on Wind Distribution of Mountain Area by Spot Measurements and Simulations (실측 및 해석을 통한 단순 산악지형의 바람장 분포 연구)

  • Kimg, Eung-Sik;Lee, Byung-Doo;Cho, Min-Tae;Kim, Jang-Whan
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.13-21
    • /
    • 2014
  • Forest fire has a number of variables and since the effects of wind fields are bigger than any other variables, it is essential to know wind direction and velocity for the forest fire extinguishing techniques and the prediction of fire spread. With regards to the local area that has a high chance of forest fire, the data from meteorological observatory in the area is used for the estimation of wind velocity. It is relatively easy to obtain automatic weather station (AWS) data which are available for the whole nation. There is a chance that the data from the weather station may be different with the actual data at the mountain areas. In this study simply shaped hills (Sae-byeol hill of Jeju Island and port Ma-geum in An-myeon Island in the sea side) were selected as the experimental locations to minimize the distortion of the wind field by the adjacent geographic features. Spot measurements and analysis of computational fluid dynamics (CFD) for the given geographic features were conducted to examine and compare their consistency. As a conclusion It is possible to predict wind patterns in these simple locations.

A Study on Improvement of Emergency Medical System for forestry accident (임업 사고 응급대응체계의 개선방안에 관한 연구)

  • Nam, Ki-Hun;Park, Young-Soo;Kim, Kwang-Il;Cho, Koo-Hyun;Lee, Eun-Jai;Baek, Seung-An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.665-671
    • /
    • 2019
  • The estimated on-site accident rate in Forestry is relatively high. According to statistics of the accident, in the recent 5 years, from 2014 to 2018, forestry accidents have resulted in 98% of injuries and 87% of fatalities. Especially, there are significant geographical constraints to access to the scene in case of an accident. Even though the capacity of first aid capacity is notably emphasized its importance to minimize the scale of damages, the relevant employees have been educated only basic first aid, which is not considered circumstances or geographic limitations, by Occupation Safety and Health Acts. Therefore, the purpose of this study is to derive a direction for a forest emergency service system to increase forestry workers' survival and prevent secondary injury through securing 'Golden Time.' This study conducts analyzing relevant laws and regulations in domestic and international settings as well as looking at several concerned accident cases. The outcome of analysis presents an issue regarding the implementation of onsite first aid in forestry and existing risk factors depending on the working process. Finally, we suggest two ways to improve the forest emergency service that are 1) an appropriate curriculum and kit for forest first aid; and 2) a system for emergency transfer through sharing information between National Fire Agency (NFA) and emergency medical service center, and emergency and rescue mission using helicopter from NFA and Korea Forest Service.

Evaluation of the Radiant Heat Effects according to the Change of Wind Velocity in Forest Fire by using WFDS (WFDS를 이용한 풍속에 따른 산림화재 복사열 강도 평가)

  • Song, Dong-Woo;Lee, Su-Kyung
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-7
    • /
    • 2013
  • The wildland fire intensity and scale are getting bigger owing to climate change in the world. In the case of domestic, the forest is distributed over approximately 63.7 % of country and the main facilities like a industrial facility or gas facility abuts onto it. Therefore there is potential that the wildland fire is developed to a large-scale disaster. In this study, the effect distances of the radiant heat flux from the crown fire are analysed according to the change of wind velocity. The safety criteria concerning the radiant heat flux to influence on the surrounding were researched to analyse the effect distances. The criteria of radiant heat flux were chosen $5kW/m^2$, $12.5kW/m^2$, $37.5kW/m^2$. WFDS, which is an extension of NIST's Fire Dynamics Simulator, was used to consequence analysis of the forest fire. In order to apply the analysis conditions, it is researched the forest conditions that is generally distributed in domestic region. As the result, the maximum effect distances by radiant heat were showed at the horizontal and vertical direction. When the wind velocity varied from 0 to 10 m/s, the maximum effect distance increased as the wind velocity increases. Interesting point is that the maximum effect distance were shown at the wind velocity of 8 m/s. The maximum effect distance was decreased according as the fuel moisture of trees increase. This study can contribute to analyse quantitative risk about the damage effect of the surrounding facilities caused by wildland fire.

A Study on Real-Time Detection of Physical Abnormalities of Forestry Worker and Establishment of Disaster Early Warning IOT (임업인의 신체 이상 징후 실시간 감지 및 재해 조기경보 사물인터넷 구축에 관한 연구)

  • Park, In-Kyu;Ham, Woon-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • In this paper, we propose the construction of an IOT that monitors foresters' physical abnormalities in real time, performs emergency measures, and provides alarms for natural disasters or heatstroke such as a nearby forest fire or landslide. Nodes provided to foresters include 6-axis sensors, temperature sensors, GPS, and LoRa, and transmit the measured data to the network server through the gateway using LoRa communication. The network server uses 6-axis sensor data to determine whether or not a forester has any signs of abnormal body, and performs emergency measures by tracking GPS location. After analyzing the temperature data, it provides an alarm when there is a possibility of heat stroke or when a forest fire or landslide occurs in the vicinity. In this paper, it was confirmed that the real-time detection of physical abnormalities of foresters and the establishment of disaster early warning IOT is possible by analyzing the data obtained by constructing a node and a gateway and constructing a network server.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

Above-ground Biomass and Crown Fuel Characteristics of Pinus densiflora in Yangyang, Gangwon Province (강원도 양양지역 소나무림의 지상부 바이오매스와 수관층 연료특성에 관한 연구)

  • Kim, Sungyong;Lee, Youngjin;Jang, Mina;Seo, Yeonok;Koo, Kyosang;Jung, Sungcheol;Kim, Kyungha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.244-250
    • /
    • 2012
  • The objective of this study was to analyze the above-ground biomass and crown fuel characteristics of Pinus densiflora stands in Yangyang, Gangwon province. A total of thirteen representative trees were destructively sampled in Yangyang region. The results showed that the stem density ($g{\cdot}cm^{-3}$) was 0.347~0.409, whereas the above-ground biomass expansion factors ranged from 1.251~1.419. In terms of crown fuel biomass, the above-ground biomass was $161.6Mg{\cdot}ha^{-1}$ while the stem biomass, branch biomass and needle biomass were $126.4Mg{\cdot}ha^{-1}$, $29.3Mg{\cdot}ha^{-1}$ and $5.9Mg{\cdot}ha^{-1}$, respectively. Needles and twigs with less than 1 cm diameter accounted 45.2% of the total crown fuel load. The available crown bulk density, which was calculated by dividing the crown fuel load to the crown volume, was $0.178kg{\cdot}m^{-3}$. The results of this study on the biomass and carbon stocks estimation of the Pinus densiflora together with the crown fire hazard assessment based on crown fuel loads are very significant information for the forest managers.

The Analysis of Forest Fire Fuel Structure Through the Development of Crown Fuel Vertical Distribution Model: A Case Study on Managed and Unmanaged Stands of Pinus densiflora in the Gyeongbuk Province (수관연료 수직분포모델 개발을 통한 산불연료구조 분석: 경북지역의 소나무림 산림시업지와 비시업지를 대상으로)

  • Lee, Sun Joo;Kwon, Chun Geun;Kim, Sung Yong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • This study compared and analyzed the effects of forest tending works on the vertical distribution of wildfire fuel loads on Pinus densiflora stands in Gyeongbuk province. The study sites were located in Youngju and Bonghwa in Pinus densiflora stands. A total of 10 sample trees were collected for the development of the crown fuel vertical distribution model. The 6th NFI (National Forest Inventory) selected a sample point that only extracted from managed and unmanaged stands of Pinus densiflora in the Gyeongbuk province. The fitness index (F.I.) of the two models developed was 0.984 to 0.989, with the estimated parameter showing statistical significance (P<0.05). A s a results, the vertical distribution of wildfire fuel loads range of unmanaged stands was from 1m to 11m with the largest distribution at point 5m at the tree height. On the other hand, the vertical distribution of wildfire fuel loads range of the managed stands was from 1m to 15m with the largest distribution at the point of 8m at the tree height. The canopy bulk density was 0.16kg/㎥ for the managed stands and 0.25kg/㎥ for the unmanaged stands, unmanaged stands were about 1.6 times more than managed stands. This result is expected to be available for simulation through the implementation of the 3D model as crown fuel was analyzed in three dimensions.

Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation (위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • Remotely sensed data provide valuable information on land monitoring due to multi-temporal observation over large areas. Especially, high resolution imagery with 0.6~1.0 m spatial resolutions contain a wealth of information and therefore are very useful for thematic mapping and monitoring change in urban areas. Recently, remote sensing technology has been successfully utilized for natural disaster monitoring such as forest fire, earthquake, and floods. In this paper, an efficient change detection method based on texture differences observed from high resolution multi-temporal data sets is proposed for mapping disaster damage and extracting damage information. It is composed of two parts: feature extraction and detection process. Timely and accurate information on disaster damage can provide an effective decision making and response related to damage.

A Study on The Awareness of Standard Operating Procedure For The Preparation in Landslide (산사태 대비 SOP에 대한 의식조사 연구)

  • Koo, WonHoi;Shin, HoJoon;Woo, ChoongShik;Baek, MinHo
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.503-510
    • /
    • 2013
  • Recently, localized heavy rain is increased by climatic changes and landslide is increased. Also, because of landslide occurred in urban area, life and property damages are increased. Therefore, standard operation procedure of disasters should be established by steps and institutions so as to respond landslide. This thesis investigated application of current disaster manual so as to write SOP of landslide for disaster prevention related experts and accepted opinion for responding necessaries by using landslide SOP and important matters by step of disaster management. As the result of investigation, application of manual was low during the current response to disasters and application was the highest in responding step among the steps of disaster management. In case of landslide, they responded that response with SOP is necessary. During the organization of landslide SOP, they responded that training and education for landslide disaster are important at the step of prevention, conduction of landslide disaster broadcasting and provision of information are important at the step of preparation, guidance for evasion and behavior methods is important at the step of response and investigation of landslide disaster damages and reflection of record and evaluation are important at the step of recovery. In addition, for the requests for landslide SOP application, there was an importance of secondary factors such as expansion of professional manpower, strengthening of law and institution, education and training for SOP acquisition, etc.