DOI QR코드

DOI QR Code

The Analysis of Forest Fire Fuel Structure Through the Development of Crown Fuel Vertical Distribution Model: A Case Study on Managed and Unmanaged Stands of Pinus densiflora in the Gyeongbuk Province

수관연료 수직분포모델 개발을 통한 산불연료구조 분석: 경북지역의 소나무림 산림시업지와 비시업지를 대상으로

  • Lee, Sun Joo (Div. of Forest Disaster Management, National institute of Forest Science) ;
  • Kwon, Chun Geun (Div. of Forest Disaster Management, National institute of Forest Science) ;
  • Kim, Sung Yong (Div. of Forest Disaster Management, National institute of Forest Science)
  • 이선주 (국립산림과학원 산림방재연구과) ;
  • 권춘근 (국립산림과학원 산림방재연구과) ;
  • 김성용 (국립산림과학원 산림방재연구과)
  • Received : 2020.09.15
  • Accepted : 2021.01.20
  • Published : 2021.03.30

Abstract

This study compared and analyzed the effects of forest tending works on the vertical distribution of wildfire fuel loads on Pinus densiflora stands in Gyeongbuk province. The study sites were located in Youngju and Bonghwa in Pinus densiflora stands. A total of 10 sample trees were collected for the development of the crown fuel vertical distribution model. The 6th NFI (National Forest Inventory) selected a sample point that only extracted from managed and unmanaged stands of Pinus densiflora in the Gyeongbuk province. The fitness index (F.I.) of the two models developed was 0.984 to 0.989, with the estimated parameter showing statistical significance (P<0.05). A s a results, the vertical distribution of wildfire fuel loads range of unmanaged stands was from 1m to 11m with the largest distribution at point 5m at the tree height. On the other hand, the vertical distribution of wildfire fuel loads range of the managed stands was from 1m to 15m with the largest distribution at the point of 8m at the tree height. The canopy bulk density was 0.16kg/㎥ for the managed stands and 0.25kg/㎥ for the unmanaged stands, unmanaged stands were about 1.6 times more than managed stands. This result is expected to be available for simulation through the implementation of the 3D model as crown fuel was analyzed in three dimensions.

본 연구는 경상북도 내 소나무림을 대상으로 산림시업이 산불수관층 연료의 수직적 분포형태에 미치는 영향을 비교·분석하기 위해 수행하였다. 수관연료의 수직분포모델을 개발하기 위해 경상북도 영주지역에 시업지 소나무림과 경상북도 봉화지역에 비시업지 소나무림을 대상으로 각 지역마다 10본의 표본목을 벌채한 자료를 이용하여 수직분포모델을 개발하였다. 적용대상지는 제 6차 국가산림자원조사 자료 중 경북지역 내 산림시업지, 비시업지 소나무림만을 추출한 표본점을 선정하였다. 개발한 두 모델의 적합도지수의 범위는 0.984~0.989로 나타났으며, 추정된 모수는 통계적인 유의성을 보였다(P<0.05). 연구 결과, 비시업지 임분의 수직적 수관연료량 분포 범위는 약 1m~11m으로 임분높이 5m 지점에서 연료가 가장 많이 분포하고 있는 반면, 시업지 임분의 수직적 수관연료량 분포범위는 약 1m~15m으로 임분높이 8m 지점에서 가장 많이 분포하고 있었다. 수관연료밀도는 시업지임분이 0.16kg/㎥, 비시업지 임분은 0.25kg/㎥로 비시업지 임분이 시업지 임분에 비해 약 1.6배 높았다. 본 연구결과는 수관연료를 3차원적으로 해석함에 있어 3D모형 구현을 통한 시뮬레이션 등에 활용이 가능할 것으로 기대된다.

Keywords

References

  1. Agee, J., 1996: The influence of forest structure on fire behavior. Proceedings of the 17th Annual Forest Vegetation Management Conference, California, 52-68.
  2. Alexander, M. E., C. N. Stefner, J. A. Mason, B. J. Stocks, G. R. Hartley, M. E. Maffey, B. M. Wotton, S. W. Taylor, N. Lavoie, and G. N. Dalrymple, 2004: Characterizing the jack pine-black spruce fuel complex of the international crown fire modeling experiment(ICFME). Natural Resources Canada, Forestry Service, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-393. 49pp.
  3. Anne-Claude, P., and W. Mike, 2020: Fire behavior observation in shrublands in nova scotia, canada and assessment of aids to operational fire behavior prediction. Fire 3(3), 34. https://doi.org/10.3390/fire3030034
  4. Call, P. T., and F. A. Albini, 1997: Aerial and surface fuel consumption in crown fires. International Journal of Wildland Fire 7(3), 259-264. https://doi.org/10.1071/WF9970259
  5. Contreras, M. A., A. P. Russell, and W. D. Chung, 2012: Modeling tree-level fuel connectivity of evaluate the effectiveness of thinning treatments for reducing crown fire potential. Forest Ecology and Management 264(2012), 134-149. https://doi.org/10.1016/j.foreco.2011.10.001
  6. Cruz, M. G., M. E. Alexande, and R. H. Wakimoto, 2003: Assessing canopy fuel stratum characteristics in crown fire prone fuel types of Western North America. Journal of Wildland Fire 12(1), 39-50. https://doi.org/10.1071/WF02024
  7. Cruz, M. G., M. E. Alexander, and R. H. Wakimoto, 2004: Modelling the likelihood of crown fire occurrence in conifer forest stands. Forest Science 50, 640-658.
  8. David, A. S., A. H. Taylor, and C. N. Skinner, 2008: The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range. Forest Ecology and Management 255(8-9), 3170-3184 https://doi.org/10.1016/j.foreco.2008.01.023
  9. Graham, R. T., A. E. Harvey, T. B. Jain, and J. R. Tonn, 1999: The effects of thinning and similar stand treatments on fire behavior in Western forests. Gen. Tech. Rep. PNW-GTR-463. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 27pp.
  10. Helen, H. M., A. W. Thomas, R. Sandra, J. P. Ross, and T. F. Charles, 2004: Effectiveness of fire and fire surrogate treatments for controlling wildfire behavior in piedmont forests: a simulation study.
  11. Harrod, R. J., W. P. David, A. P. Nicholas, and K. D. Erich, 2009: Thinning and prescribed fire effects on overstory tree and snag structure in dry coniferous forests of the interior Pacific Northwest. Forest Ecology and Management 258(5), 712-721. https://doi.org/10.1016/j.foreco.2009.05.011
  12. Joseph, D. L., 2001: Wildland firefighting practice. Delmar Thomson Learning, 14-45.
  13. Jang, M. N., B. D. Lee, Y. O. Seo, S. Y. Kim, and Y. J. Lee, 2011: Crown Fuel Characteristics and Fuel Load Estimation of Pinus densiflora S. et Z. in Bonghwa, Gyeongbuk. Journal of Korean Forest Society 100(3), 402-407.
  14. Jain, T. B., M. A. Battaglia, H. S. Han, R. T. Graham, C. R. Keyes, J. S. Fried, and J. E. Sandquist, 2012: A comprehensive guide to fuel management practices for dry mixed coniferorests in the northwestern united states. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 331pp.
  15. Jeon, B. R., 2016: The Study on Predictions of Forest Fire Occurrence Using Climate Scenario (RCP) in Korea. Graduate School, Kangwon National University, 90pp.
  16. Jennifer, L.B., E. R. L. Sonja, C. Hilary, and S. Dave, 2020: Stand-level fuel reduction treatments and fire behavior in Canadian Boreal Conifer Forests. Fire 3(3), 1-23.
  17. Koo, K. S., B. D. Lee, M. S. Won, and M. B. Lee, 2010: Crown fuel characteristics of Japanese Red Pine in Mt. Palgong, Daegu. Journal of Korean Forest Society 99(1), 52-56.
  18. Kim, S. Y., C. G., Kwon, H. Y., Ahn, B. D. Lee, and M. N. Jang, 2017: Allometric equations for crown fuel load of Pinus rigida stands in South Korea. Crisionomy 13(12), 127-137.
  19. Kim, S. Y., M. N. Jang, S. J. Lee, and Y. J. Lee, 2018: Comparison of fuel characteristics between coastal and inland type of Pinus thunbergii stands. Journal of Disaster Management 18(2), 175-183.
  20. KFS (Korea Forest Service), 2012: The 6th National Forest Inventory Report, 60pp.
  21. KFS (Korea Forest Service), 2019: Statistical Yearbook of Forestry, 441pp.
  22. Lee, S. Y., M. S. Won, and S. Y. Han, 2005: Developing of forest fire occurrence danger index using fuel and topographical characteristics on the condition of ignition point in Korea. Fire Science and Engineering 19(4), 75-79.
  23. Lee, B. D., H. J. Youn, K. S. Koo, and K. H. Kim, 2012: Estimation of biomass loss and greenhouse gases emissions form surface layer burned by forest fire. Jounal of Korean Forest Society 101 (2), 286-290.
  24. Lee, S. J., S. Y. Kim, B. D. Lee, and Y. J. Lee, 2018: Estimation of canopy fuel characteristics for Pinus densiflora stands using diameter distribution models: Forest managed stands and unmanaged stands. Journal of Korean Forest Society 107(4), 412-421.
  25. Lee, S. J., M. N. Jang, Y. J. Lee, C. G. Kwon, B. D. Lee, and S. Y. Kim, 2020: The effects of thinning intensity on vertical distribution of wildfire fuel in Pinus rigida stands - Focused on the crown fuel characteristics. Crisionomy 16(7), 147-156.
  26. Mutch, R. W., S. F. Arno, J. K. Brown, C. E. Carlson, R. D. Ottmar, and J. L. Peterson, 1993: Forest health in the Blue mountains: A management strategy for fire-adapted ecosystems. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 14pp.
  27. Mitsopoulos, I. D., and A. P. Dimitrakopoulos, 2007: Allometric equation for crown fuel biomass of Aleppo pine(Pinus halepensis Mill) in Greece. International Journal of Wildland Fire 16(5), 642-647. https://doi.org/10.1071/WF06038
  28. Scott, J. H., and E. D. Reinhardt, 2001: Assessing crown fire potential by linking models of surface and crown fire behavior. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 59pp.
  29. Sharon, M. H., R. K. Christopher, J. B. Katelynn, C. L. Duncan, and S. Carl, 2020: Fuel treatment longevity in ponderosa pine-dominated forest 24 years after cutting and prescribed burning. Frontiers in Forests and Global Change 3(78), 1-16. https://doi.org/10.3389/ffgc.2020.00001
  30. Susan, J. P., A. P. Nicholas, C. K. Maureen, and W. P. David, 2020: Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires. Ecological Applications 30 (5), 1-20.
  31. Wendy, R. A., G. C. Miguel, M. F. Paulo, M. Lachlan, A. V. Jose, A. B. Ross, F. Liam, G. Jim, M. Greg, B. M. Jon, M. Stuart, M. Greg, and W. Brian, 2015: A generic, empirical-based model for predicting rate of fire spread in shrub lands. International Journal of Wildland Fire 24 (4), 443-460. https://doi.org/10.1071/WF14130