• Title/Summary/Keyword: Forest Volume Estimation Model

Search Result 42, Processing Time 0.023 seconds

Development of Stem Volume Table for Robinia pseudoacacia Using Kozak's Stem Profile Model (Kozak 수간곡선 모형을 이용한 아까시나무 입목재적표 개발)

  • Son, Yeong-Mo;Jeon, Jun-Heon;Pyo, Jung-Kee;Kim, Kyoung-Nam;Kim, So-Won;Lee, Kyeong-Hak
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.43-49
    • /
    • 2012
  • This study was conducted to develop a stem volume table for the Robinia pseudoacacia using stem taper equations. Specifically, Kozak's model was used in the estimation of each model parameter. The fitness of the estimated model was statistically verified and results of the residual analysis were found significant. Therefore, this model is considered applicable in the preparation of stem volume table for R. pseudoacacia. Furthermore, volume with bark and without bark table were developed based on the bark thickness estimation equation. The bark thickness estimation equation was also statistically significant, The stem volume table developed for R. pseudoacacia, which was first in Korea, is vital in managing these forests.

Estimation of Merchantable Volume Ratio by Major Species (주요 수종별 재적의 상업적 이용율 추정)

  • Son, Yeong Mo;Kang, Jin Taek;Won, Hyun Kyu;Jeon, Ju Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.330-335
    • /
    • 2016
  • This study was conducted to derive merchantable volume ratio for 5 major species such as Pinus Densiflora (Central Region). The data used for this study was from at least more than 1,300 trees of research data throughout the country. the study applied two estimation equations, which were the estimation equation for wood volume ratio representing total wood volume to total tree stem volume and the estimation equation for merchantability representing ratio of merchantable volume to total wood volume. The merchantable volume ratio was derived by multiplying those two estimation equations. In order to gain wood volume ratio(W) from DBH, $W=\frac{a_1}{1+a_2/D}+\frac{b_1}{1+b_2/D}$ model was used. Fitness index of it was more than 99% by species, and other test statistics also indicated the suitability of this equation enough. Merchantability (M) for wood volume applied $M=e^{a_1\(\frac{d}{D}\)^{a_2}}-(b_0+b_1D+b_2D^2+b_3D^3)$ model and fitness index was more than 96% by species. Merchantable volume ratio was assessed using those two estimation equations by each 5 species, and constructed a merchantable volume ratio table. In result, merchuntable volume ratio was little difference between stand types, but there was slightly different with the existing standard such as conifers of 85% and non-conifers of 70%.

Estimation and Comparison of Stem Volume for Larix kaempferi in South Korea using the Stem Volume Model (수간재적모델에 따른 일본잎갈나무의 수간재적 추정 및 비교)

  • Ko, Chi-Ung;Moon, Ga-Hyun;Yim, Jong-Su;Lee, Sun-Jeoung;Kim, Dong-Geon;Kang, Jin-Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.592-599
    • /
    • 2019
  • This study aimed to develop an equation for estimating stem volume for Larix kaempferiin South Korea using independent variables, diameter at breast height (DBH), and height as being closely associated with stem volume. Analysis was conducted on the growth performance of 2,840 Larix kaempferi samples across South Korea after felling them and gleaning diameter data according to both stem height and stem analyses. In order to test the fitness of six different stem taper equations, empirical assessment was conducted for fitness index (FI), bias, mean, and absolute deviation (MAD), and coefficient variation (%CV). The two selectedmodels found to be optimal were the following: model one (V=a+bDBH2), established by employing DBH only; and model four (V=a+bDBH2H), established by utilizing DBH and height, respectively. The findings of non-linear regression indicated statistical significance (p < 0.05) in a and b, which were the coefficients for the intercepts and slopes of the models. The FI of the models ranged between 94% and 99%, and the bias was close to zero, while MAD ranged from 0.01 to 0.05, and %CV from 5.97 to 14.43, indicating a high level of fitness. Thus, using the suggested models, the basic information necessary for forest management was obtained, and an estimation of the stem volume was effected without delay soon after effecting DBH and height measurements.

Evaluation and validation of stem volume models for Quercus glauca in the subtropical forest of Jeju Island, Korea

  • Seo, Yeon Ok;Lumbres, Roscinto Ian C.;Won, Hyun Kyu;Jung, Sung Cheol;Lee, Young Jin
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.485-491
    • /
    • 2015
  • This study was conducted to develop stem volume models for the volume estimation of Quercus glauca Thunb. in Jeju Island, Republic of Korea. Furthermore, this study validated the developed stem volume models using an independent dataset. A total of 167 trees were measured for their diameter at breast height (DBH), total height and stem volume using non-destructive sampling methods. Eighty percent of the dataset was used for the initial model development while the remaining 20% was used for model validation. The performance of the different models was evaluated using the following fit statistics: standard error of estimate (SEE), mean bias absolute mean deviation (AMD), coefficient of determination (R2), and root mean square error (RMSE). The AMD of the five models from the different DBH classes were determined using the validation dataset. Model 5 (V = aDbHc), which estimates volume using DBH and total height as predicting variables, had the best SEE (0.02745), AMD (0.01538), R2 (0.97603) and RMSE (0.02746). Overall, volume models with two independent variables (DBH and total height) performed better than those with only one (DBH) based on the model evaluation and validation. The models developed in this study can provide forest managers with accurate estimations for the stem volumes of Quercus glauca in the subtropical forests of Jeju Island, Korea.

Growth Curve Estimation of Stand Volume by Major Species and Forest Type on Actual Forest in Korea (주요 수종 및 임상별 현실림의 재적생장량 곡선 추정)

  • Yoon, Jun-Hyuck;Bae, Eun-Ji;Son, Yeong-Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.648-657
    • /
    • 2021
  • This study was conducted to estimate the volume growth by forest type and major species using the national forest resource inventory and to predict the final age of maturity by deriving the mean annual increment (MAI) and the current annual increment (CAI). We estimated the volume growth using the Chapman-Richards model. In the volume estimation equations by forest type, coniferous forests exhibited the highest growth. According to the estimation formula for each major species, Larix kaempferi will grow the highest among coniferous tree species and Quercus mongolica among broad-leaved tree species. And these estimation formulas showed that the fitness index was generally low, such as 0.32 for L. kaempferi and 0.21 for Quercus variabilis. In the analysis of residual amount, which indicates the applicability of the volume estimation formula, the estimates of the estimation formula tended to be underestimated in about 30 years or more, but most of the residuals were evenly distributed around zero. Therefore, these estimation formulas have no difficulty estimating the volume of actual forest species in Korea. The maximum age attained by calculating MAI was 34 years for P. densiflora, 35 years for L. kaempferi, and 31 years for P. rigida among coniferous tree species. In broad-leaved tree species, we discovered that the maximum age was 32 years for Q. variabilis, 30 years for Q. acutissima, and 29 years for Q. mongolica. We calculated MAI and CAI to detect the point at which these two curves intersected. This point was defined by the maximum volume harvesting age. These results revealed no significant difference between the current standard cutting age in public and private forests recommended by the Korea Forest Service, supporting the reliability of forestry policy data.

Development of Forest Volume Estimation Model Using Airborne LiDAR Data - A Case Study of Mixed Forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun - (항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 -)

  • CHO, Seung-Wan;KIM, Yong-Ku;PARK, Joo-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • This study aims to develop a regression model for forest volume estimation using field-collected forest inventory information and airborne LiDAR data. The response variable of the model is forest stem volume, was measured by random sampling from each individual plot of the 30 circular sample plots collected in Bonghwa-gun, Gyeong sangbuk-do, while the predictor variables for the model are Height Percentiles(HP) and Height Bin(HB), which are metrics extracted from raw LiDAR data. In order to find the most appropriate model, the candidate models are constructed from simple linear regression, quadratic polynomial regression and multiple regression analysis and the cross-validation tests were conducted for verification purposes. As a result, $R^2$ of the multiple regression models of $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}$ among the estimated models was the highest at 0.509, and the PRESS statistic of the simple linear regression model of $HP_{25}$ was the lowest at 122.352. $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}-based$ models, thus, are comparatively considered more appropriate for Korean forests with complicated vertical structures.

Development of a Site Productivity Index and Yield Prediction Model for a Tilia amurensis Stand (피나무의 임지생산력지수 및 임분수확모델 개발)

  • Sora Kim;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyelim Lee;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.209-216
    • /
    • 2023
  • This study aimed to use national forest inventory data to develop a forest productivity index and yield prediction model of a Tilia amurensis stand. The site index displaying the forest productivity of the Tilia amurensis stand was developed as a Schumacher model, and the site index classification curve was generated from the model results; its distribution growth in Korea ranged from 8-16. The growth model using age as an independent variable for breast height and height diameter estimation was derived from the Chapman-Richards and Weibull model. The Fitness Indices of the estimation models were 0.32 and 0.11, respectively, which were generally low values, but the estimation-equation residuals were evenly distributed around 0, so we judged that there would be no issue in applying the equation. The stand basal area and site index of the Tilia amurensis stand had the greatest effect on the stand-volume change. These two factors were used to derive the Tilia amurensis stand yield model, and the model's determination coefficient was approximately 94%. After verifying the residual normality of the equation and autocorrelation of the growth factors in the yield model, no particular problems were observed. Finally, the growth and yield models of the Tilia amurensis stand were used to produce the makeshift stand yield table. According to this table, when the Tilia amurensis stand is 70 years old, the estimated stand-volume per hectare would be approximately 208 m3 . It is expected that these study results will be helpful for decision-making of Tilia amurensis stands management, which have high value as a forest resource for honey and timber.

Estimation of Stand Growth and CO2 Removals for Juglans mandshurica Plantations in ChungJu, Chungcheongbuk-do in Korea (충북 충주지역 가래나무의 임목생장량 및 이산화탄소 흡수량 추정)

  • Son, Yeong Mo;Kim, Rae Hyun;Kim, Young Hwan;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.646-651
    • /
    • 2009
  • In this study, it was intended to prepare a stem volume table (with or without bark) and a stand yield table for Juglans mandshurica, plantations in Chungju, located in Chungcheongbuk-do, Korea. For the calculation of stem volume, we applied Kozak's growth model, which showed the best fitness index (97%). With this model, it was able to prepare the first yield table for Juglans mandshurica in Korea. Site index model, an indicator of forest productivity, was derived by using the Chapman-Richard model, in which the basic stand age was set to 30 years. The resulted site index ranged between 16 and 22. Based on the yield table of Juglans mandshurica resulted from this study, the volume for a 70-year-old stand with a midium site index class was estimated to be $238m^3/ha$, which is $100m^3/ha$ higher than the volume estimated from the yield table of Quercus acutissima. The yield table of oak trees has been used in the estimation of most broadleaf stands in Korea. However, the result of this study indicated that it is necessary to generate a stand yield table for each broadleaf species. The annual $CO_2$ removals of 30-year-old Juglans mandshurica plantations in the ChungJu region was estimated to be $5.84tCO_2/ha$. The stem volume and stand yield table of Juglans mandshurica plantation resulted from this study would provide a good information in decision making for forest management in ChungJu region.

Detection of Site Environment and Estimation of Stand Yield in Mixed Forests Using National Forest Inventory (국가산림자원조사를 이용한 혼효림의 입지환경 탐색 및 임분수확량 추정)

  • Seongyeop Jeong;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyokeun Park;JungBin Lee;Kyujin Yeom;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • This study was established to investigate the site environment of mixed forests in Korea and to estimate the growth and yield of stands using national forest resources inventory data. The growth of mixed forests was derived by applying the Chapman-Richards model with diameter at breast height (DBH), height, and cross-sectional area at breast height (BA), and the yield of mixed forests was derived by applying stepwise regression analysis with factors such as cross-sectional area at breast height, site index (SI), age, and standing tree density per ha. Mixed forests were found to be growing in various locations. By climate zone, more than half of them were distributed in the temperate central region. By altitude, about 62% were distributed at 101-400 m. The fitness indexes (FI) for the growth model of mixed forests, which is the independent variable of stand age, were 0.32 for the DBH estimation, 0.22 for the height estimation, and 0.18 for the basal area at breast height estimation, which were somewhat low. However, considering the graph and residual between the estimated and measured values of the estimation equation, the use of this estimation model is not expected to cause any particular problems. The yield prediction model of mixed forests was derived as follows: Stand volume =-162.6859+6.3434 ∙ BA+9.9214 ∙ SI+0.7271 ∙ Age, which is a step- by-step input of basal area at breast height (BA), site index (SI), and age among several growth factors, and the determination coefficient (R2) of the equation was about 96%. Using our optimal growth and yield prediction model, a makeshift stand yield table was created. This table of mixed forests was also used to derive the rotation of the highest production in volume.

Development of a Wood Recovery Estimation Model for the Tree Conversion Processes of Larix kaempferi (낙엽송 제재에 따른 이용재적 산출 모델의 개발)

  • Kwon, Kibeom;Han, Hee;Seol, Ara;Chung, Hyejean;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.484-490
    • /
    • 2013
  • This study was conducted to develop a simulation model for estimating the amount of such products as round wood, dimension lumber and the residual wood biomass produced by processing the individual trees of Larix kaempferi. In the model, the stem volume is assessed using the taper equations of the species to estimate the stem forms. Then, the model simulates the conversion processes of logs to round wood or lumber and assesses the maximum amount of the wood products by the lumber dimensions or round wood size. Also the model provides information on the amount of residuals for kerf and slabs produced on the conversion processes for sawn timber or round wood. According to the results of an application of the model to a L. kaempferi process, the trees greater than 12 cm of DBH can be converted to logs for lumber or round wood production. For the trees, of which DBH is available for log conversion, the maximum amount of final products by dimensions were analyzed. In this analysis, production of the bigger dimension lumber was assumed to be preferred to that of the smaller or round wood. This model can be used for assesment of forest economic value through estimation of merchantable volume for the trees, and assessment of mill residues which has the potential to provide significant amount of feedstock for bioenergy production as well.