• Title/Summary/Keyword: Forest Vegetation Distribution

Search Result 474, Processing Time 0.029 seconds

Effects on Vegetation Distribution of Odaesan National Park according to Climate and Topography of Baekdudaegan, Korea

  • Han, Bong-Ho;Choi, Jin-Woo;Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1111-1124
    • /
    • 2017
  • This study aimed to understand the distribution of vegetation in the eastern and western sides of the Baekdudaegan (ridge) dividing the Odaesan National Park, as influenced by its topography and climate. The actual vegetation, topography and climate for each side were used in the overlay analysis. The results of the analysis of actual vegetation showed a high distribution rate of Quercus mongolica forest on both the eastern and western sides. On the eastern side, the distribution rate of Pinus densiflora forest and P. densiflora-Q. variabilis forest was high, while the western side had a high distribution rate of deciduous broad-leaved tree forest and Abies hollophylla forest. A clear trend was identified for vegetation distribution with respect to elevation but not with respect to slope or aspect. The results of micro-landform analysis showed that the P. densiflora forests in the ridge and slope and the deciduous broad-leaved tree forest in the valley were respectively distributed with a high ratio. In terms of climate, the eastern side revealed an oceanic climate, with a relatively high average annual temperature, while the western side was characterized by relatively high average annual humidity and average annual precipitation. The distribution rate of P. densiflora forest was found to be high on the eastern side of the mountain range.

Temporal Change in Vertical Distribution of Woody Vegetation on the Flank of Sakurajima Volcano, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Lim, Young-Hyup;Kim, Suk-Woo;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.3
    • /
    • pp.270-279
    • /
    • 2016
  • This study explained vertical distributions and growth environments for woody vegetation. It had been degenerated by long-term volcanic activity of Sakurajima; vegetation and thicknesses of tephra layers and forest soils were investigated at 5 sites (250-700 m in altitude) with different altitudes localized at the northwestern-northern flanks of Sakurajima in Kagoshima Prefecture. The results in 2015 were compared with the vertical distribution of woody vegetation in 1963, when the volcanic activity of Sakurajima was relatively moderate. Thus, we investigated temporal changes in the vertical distribution of woody vegetation owing to volcanic activity over about 50 years (1963-2015). We indicated altitude decreased, the number of woody vegetation, number of species, sum of cross-sectional area of tree diameter at breast height, Fisher-Williams's diversity index ${\alpha}$, and forest soil thickness increased. However, these values were found to be degenerated when compared to climax forest values, and succession was incomplete. It seems that because the woody vegetation of the flank was affected by volcanic activity for a long time, exposing them to severe growth environments, areas with lower altitudes became distant from the craters of Sakurajima, thereby weakening the effect of volcanic activity in these areas at lower altitudes. a at the same altitudes over about 50 years (1963-2015) decreased by about 31-72%, and the sum of the cross-sectional area in tree diameter at breast heights decreased by about 14-62%. Thus, comparative growth environments for woody vegetation in 2015 were more severe than that of 1963, with respect to tephra layer thickness. In addition, for vegetation succession in the flank of Sakurajima, vegetation restoration should be promoted through the introduction of artificial woody plants covered by symbiotic microorganisms or organic materials.

Vegetation Management Units and Its Landscape Structures of Mt. Cheolma, in Incheon City, Korea

  • Cho, Hyun-Je;Cho, Je-Hyung
    • 한국생태학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.71-77
    • /
    • 2002
  • For landscape ecological management of the isolated forestlands in Incheon city located in the western tip of South Korea, the forest vegetation of Mt. Cheolma was classified phytosciologically and mapped out its spatial distribution at a scale of 1:5,000. Characteristics of forest landscape structures were discussed in terms of the number and size of patches obtained by analyzing vegetation map. Units to manage the forest vegetation were categorized into eighteen communities, seventeen groups, and sixteen subgroups. Landscape elements were classified into five types: secondary vegetation, introduced vegetation for forestry (IVF), introduced vegetation for agriculture (IVA), and other elements. Two hundred and ninety-three forest landscape patches covers 443.3ha of which IVF accounted for 316.8ha(71.5%), the largest portion, secondary vegetation for f01.2ha(22.8%), IVA for 6.2ha(1.4%), and others for 19.1ha(4.3%). The ratio of natural forest elements of 31.9% showed that this area was mainly comprised of artificially introduced vegetation, such as Robinia pseudoacacia plantation and Pinus rigida plantation. Forest landscape patches have a mean area of 4.5ha, a density of 66.1/100ha, and a diversity index of 0.87. It was estimated that differentiation of patches recognized in community level would be related to human interference and those in subordinate level to natural processes.

  • PDF

Vegetation Management Units and Its Landscape Structures of Mt. Cheolma, in Incheon City, Korea

  • Cho, Hyun-Je;Cho, Je-Hyuung
    • The Korean Journal of Ecology
    • /
    • v.25 no.4
    • /
    • pp.205-211
    • /
    • 2002
  • For landscape ecological management of the isolated forestlands in Incheon city located in the western tip of South Korea, the forest vegetation of Mt. Cheolma was classified phytosciologically and mapped out its spatial distribution at a scale of 1:5,000. Characteristics of forest landscape structures were discussed in terms of the number and size of patches obtained by analy zing vegetation map. Units to manage the forest vegetation were categorized into eighteen communities, seventeen groups, and sixteen subgroups. Landscape elements were classified into five types: secondary vegetation, introduced vegetation for forestry (IVF), introduced vegetation for agriculture (IVA), and other elements. Two hundred and ninety-three forest landscape patches covers 443.3ha, of which IVF accounted for 316.8ha(71.5$\%$), the largest portion, secondary vegetation for 101.2ha(22.8$\%$), IVA for 6.2ha(1.4$\%$), and others for 19.1ha(4.3$\%$). The ratio of natural forest elements of 31.9$\%$ showed that this area was mainly comprised of artificially introduced vegetation, such as Robinia pseudoacacia plantation and Pinus rigida plantation. Forest landscape patches have a mean area of 4.5ha, a density of 66.1/100ha, and a diversity index of 0.87. It was estimated that differentiation of patches recognized in community level would be related to human interference and those in subordinate level to natural processes.

A Study on Distribution of Vegetation and Assessment of Green Naturality in Byeonsanbando National Park (변산반도국립공원의 식생분포 및 녹지자연도 사정에 관한 연구)

  • Oh, Koo-Kyoon;Kim, Sun-Young
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.2
    • /
    • pp.161-168
    • /
    • 2009
  • This research aims at having a grip on the actual condition of vegetation distribution Byeonsanbando National Park and to propose a survey and drawing criteria for vegetation map. Thus, this research conducted a survey of the vegetation distribution on Byeonsanbando National Park through review of the literatures on vegetation surveys on the National Parks in the past and at the present and preparing criteria for survey and drawing of vegetation. The actual vegetation of Bye on san ban do National Park was classified into eight plant communities and other land; the Substitution forest, or natural forest was classified into four plant communities including Quercus variabilis community, deciduous forest, Pinus densiflora community, and mixed forest while afforested land was classified into four forest types: P. rigida forest, P. thunbergii forest, P. rigida forest, P. rigitaeda forest, P. rigida - thunbergii forest, etc. The area belonging to grade 7 in Nature Degree was found to be the largest, covering 69.1% in Byeonsanbando National Park while the area belonging to grade 9 was very rare, covering 0.36%. Thus, it is suggested that criteria for survey and drawing map needed for the systematic survey and management of vegetation in National Parks.

Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea

  • Jang, Rae-Ha;Lee, Seung-Yeon;Lee, Eung-Pill;Lee, Soo-In;Kim, Eui-Joo;Lee, Sang-Hun;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.390-399
    • /
    • 2019
  • Background: The Northern Hemisphere forest ecosystem is a major sink for atmospheric carbon dioxide, and the subalpine zone stores large amounts of carbon; however, their magnitude and distribution of stored carbon are still unclear. Results: To clarify the carbon distribution and carbon budget in the subalpine zone at volcanic Jeju Island, Korea, we report the C stock and changes therein owing to vegetation form, litter production, forest floor, and soil, and soil respiration between 2014 and 2016, for three subalpine forest ecosystems, namely, Abies koreana forest, Taxus cuspidata forest, and Juniperus chinensis var. sargentii forest. Organic carbon distribution of vegetation and NPP were bigger in the A. koreana forest than in the other two forests. However, the amount of soil organic carbon distribution was the highest in the J. chinensis var. sargentii forest. Compared to the amount of organic carbon distribution (AOCD) of aboveground vegetation (57.15 t C ha-1) on the subalpine-alpine forest in India, AOCD of vegetation in the subalpine forest in Mt. Halla was below 50%, but AOCD of soil in Mt. Halla was higher. We also compared our results of organic carbon budget in subalpine forest at volcanic island with data synthesized from subalpine forests in various countries. Conclusions: The subalpine forest is a carbon reservoir that stores a large amount of organic carbon in the forest soils and is expected to provide a high level of ecosystem services.

Changes Over Time in the Community Structure and Spatial Distribution of Forest Vegetation on Mt. Yeompo, Ulsan City, South Korea (염포산 산림식생의 군락 구조 및 공간 분포의 경시적 변화)

  • Oh, Jeong-Hak;Kim, Jun-Soo;Cho, Hyun-Je
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • In 2000 and 2018, phytosociological surveys were carried out in the forest vegetation of Mt. Yeompo, a representative isolated urban forest in Ulsan city. The trends of change in forest structure, composition, and spatial distribution were compared between years. Total percent coverage per 100 squaremeters of forest vegetation was similar, but natural vegetation showed a 9% increase. The importance of constituent species changed slightly. Specifically, Lindera erythrocarpa and Styrax japonicus showed very high growth rates of 835% and 269%, respectively. Species richness (S) and diversity (H') decreased by about 22% and 8%, respectively. Both S and H' showed slightly higher rates of decrease in artificial compared with natural vegetation. The constituent species life form spectrums were the same in 2000 and 2018 as 'MM-R5-D4-e'. The similarity (Jaccard coefficient) in the species composition of the forest vegetation was almost homogeneous at approximately 75%. The number of indicator species decreased from 16 species in 2000 to 7 species in 2018. This decrease was mostly due to a decline in herbaceous plants, such as Hemicryptophytes, Geophytes, and Therophytes, which are sensitive to disturbances. The spatial distribution of forest vegetation did not change significantly. The number of forest landscape elements (patches) increased by approximately 25% from 537 in 2000 to 721 in 2018, while the average size decreased by about 20% from 1.28 ha in 2000 to 1.03 ha in 2018.

Actual Vegetation Distribution Status and Ecological Succession in the Deogyusan National Park (덕유산국립공원 현존식생 분포현황 및 천이 연구)

  • Kim, Hyoun-Sook;Lee, Sang-Myong;Song, Ho-Kyung
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.37-46
    • /
    • 2011
  • This study was written about the actual vegetation map by researchig current vegetation and on-site vegetation in the Deogyusan National Park. Current vegetation patterns were classified into 42 types according to correlation. And Quercus mongolica forest was 39.08% out of the total forest vegetation, and was dispersed the most widely. Next were Q. variabilis, Pinus densiflora, and Fraxinus mandshurica forests in order, so that the forests of Deogyusan are different from those of another national parks in that F. mandshurica forest is more widely dispersed. Forest vegetation of Deogyusan national park is broadly classified into three types: deciduous broad-leaved forest (Quercus forest and valley forest), coniferous forest(P. densiflora forest), and sub-alpine forest(Taxus cuspidata forest, Abies koreana, Rhododendron schlippenbachii shrub-forest, and prairie). Distribution of DBH of Q. mongolica and Q. variabillis had a higher frequency of young individuals and middle individuals, Q. serrata and Carpinus laxiflora had a higher frequency of young individuals, suggesting a continuous domination of these species over the other species for the time being. In contrast, F. mandshurica appeared limited to the valley of the sheet and a higher frequency of young individuals, suggesting a continuous domination of these species the development of a climax forest terrain. P. densiflora, Betula davurica, Cornus controversa, B. costata, A. koreana and T. cuspidata had a formality distribution, suggesting a continuous domination of these species over the other species for the time being.

A Study on the Vulnerability Assessment of Forest Vegetation using Regional Climate Model (지역기후모형을 이용한 산림식생의 취약성 평가에 관한 연구)

  • Kim, Jae-Uk;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.32-40
    • /
    • 2006
  • This study's objects are to suggest effective forest community-level management measures by identifying the vulnerable forest vegetation communities types to climate change through a comparative analysis with present forest communities identified and delineated in the Actual Vegetation Map. The methods of this study are to classify the climatic life zones based on the correlative climate-vegetation relationship for each forest vegetation community, the Holdridge Bio-Climate Model was employed. This study confirms relationship between forest vegetation and environmental factors using Pearson's correlation coefficient analysis. Then, the future distribution of forest vegetation are predicted derived factors and present distribution of vegetation by utilizing the multinomial logit model. The vulnerability of forest to climate change was evaluated by identifying the forest community shifts slower than the average velocity of forest moving (VFM) for woody plants, which is assumed to be 0.25 kilometers per year. The major findings in this study are as follows : First, the result of correlative analysis shows that summer precipitation, mean temperature of the coldest month, elevation, soil organic matter contents, and soil acidity (pH) are highly influencing factors to the distribution of forest vegetation. Secondly, the result of the vulnerability assessment employing the assumed velocity of forest moving for woody plants (0.25kmjyear) shows that 54.82% of the forest turned out to be vulnerable to climate change. The sub-alpine vegetations in regions around Mount Jiri and Mount Seorak are predicted to shift the dominance toward Quercus mongolica and Pinus densiflora communities. In the identified vulnerable areas centering the southern and eastern coastal regions, about 8.27% of the Pinus densiflora communities is likely to shift to sub-tropical forest communities, and 3.38% of the Quercus mongolica communities is likely to shift toward Quercus acutissima communities. In the vulnerable areas scattered throughout the country, about 8.84% of the Quercus mongolica communities is likely to shift toward Pinus densiflora communities due to the effects of climate change. The study findings concluded that challenges associated with predicting the future climate using RCM and the assessment of the future vulnerabilities of forest vegetations to climate change are significant.

Community Distribution on Forest Vegetation of the Hyangjeokbong in the Deogyusan National Park (덕유산 국립공원 향적봉 일대 삼림식생의 군락분포에 관한 연구)

  • Choi, Young-Eun;Oh, Jang-Geun;Kim, Chang-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.289-300
    • /
    • 2013
  • Forest vegetation of Hyangjeokbong (1,614 m) in Deogyusan National Park is classified into mountain forest vegetation and flatland forest vegetation. Mountain forest vegetation is subdivided into deciduous broad-leaved forest, valley forest, coniferous forest, subalpine coniferous forest, shrub forest, grassland forest, afforestation and etc., while riparian forest was found under the category of flatland forest vegetation. Including 122 communities of mountain forest vegetation and 2 communities of riparian forest, the total of 124 communities were researched; the distributed colonies classified by physiognomy classification are 42 communities deciduous broad-leaved forest, 37 communities of valley forest, 8 communities of coniferous forests, 6 communities of subalpine coniferous forest, 3 communities of shrub forest, 1 communities of grassland forest, 21 afforestation and 4 other communities. As for the distribution rate for surveyed main communities, Quercus mongolica, Quercus serrata, Quercus variabilis communities account for 47.02 percent of deciduous broad-leaved forest, Fraxinus mandshurica community takes up 57.48 percent of mountain valley forest, Pinus densiflora community holds 77.53 percent of mountain coniferous forest holds, and Taxus cuspidate-Abies koreana community takes up about 50 percent of subalpine coniferous forest. Mountain shrub forest and mountain grassland forest vegetation are concentrated mainly on the top of Hyangjeokbong and the ridge connecting the top and Jungbong. Meanwhile, riparian forest vegetation comprises 0.024% of the whole vegetation area in a study area. In conclusion, minority species consisting of Quercus mongolica, Quercus serrata, Quercus variabilis, Fraxinus mandshurica, Cornus controversa, Pinus densiflora, Abies koreana and Taxus cuspidata are distributed as dominant species of the uppermost part in a forest vegetation region in Deogyusan National Park. In addition, because of vegetation succession and climate factors, numerous colonies formed by the two species are expected to be replaced by Quercus mongolica, Carpinus laxiflora and Fraxinus mandshurica which are climax species in the area. However, in respect of subalpine coniferous forest, the distribution rate of deciduous broad-leaved forest seems to increase gradually due to global warming and artificial disturbance.