• Title/Summary/Keyword: Forest Ecology

Search Result 2,210, Processing Time 0.027 seconds

Stage Structure and Population Persistence of Cypripedium japonicum Thunb., a Rare and Endangered Plants (희귀 및 멸종위기식물인 광릉요강꽃의 개체군 구조 및 지속성)

  • Lee, Dong-hyoung;Kim, So-dam;Kim, Hwi-min;Moon, Ae-Ra;Kim, Sang-Yong;Park, Byung-Bae;Son, Sung-won
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.548-557
    • /
    • 2021
  • Cypripedium japonicum Thunb. is an endemic plant in East Asia, distributed only in Korea, China, and Japan. At the global level, the IUCN Red List evaluates it as "Endangered Species (EN)," and at the national level in Korea, it is evaluated as "Critically Endangered Species (CR)." In this study, we investigated the characteristics of the age structure and the sustainability of the population based on the data obtained by demographic monitoring conducted for seven years in the natural habitat. C. japonicum habitats were observed in 7 regions of Korea (Pochoen, Gapyeong, Hwacheon, Chuncheon, Yeongdong, Muju, Gwangyang), and 4,356 individuals in 15 subpopulations were identified. The population size and structure differed from region to region, and artificial management had a very important effect on the size and structural change of the population. Population viability analysis (PVA) based on changes in the number of individuals of C. japonicum showed a very diverse tendency by region. And the probability of population extinction in the next 100 years was 0.00% for Pocheon, 10.90% for Gwangyang, 24.05% for Chuncheon, and 79.50% for Hwacheon. Since the above monitored study sites were located within the conservation shelters, which restricted access by humans, unauthorized collection of C. japonicum, the biggest threat to the species, was not reflected in the individual viability. So, the risk of extinction in Korea is expected to be significantly higher than that estimated in this study. Therefore, it is necessary to reflect population information in several regions that may represent various threats to determine the extinction risk of the C. japonicum population objectively. In the future, we should expand the demographic monitoring of the C. japonicum population known in Korea.

Characteristics of Herbaceous Vegetation Structure of Barren Land of Southern Limit Line in DeMilitarized Zone (비무장지대 남방한계선 불모지 초본식생구조 특성)

  • Yu, Seung-Bong;Kim, Sang-Jun;Kim, Dong-Hak;Shin, Hyun-Tak;Bak, Gippeum
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.135-153
    • /
    • 2021
  • The demilitarized zone (DMZ) is a border barrier with 248 kilometers in length and about 4 kilometers in width crossing east to west to divide the Korean Peninsula about in half. The boundary at 2 kilometers to the south is called the southern limit line. The DMZ has formed a unique ecosystem through a natural ecological succession after the Armistice Agreement and has high conservation value. However, the use of facilities for the military operation and the unchecked weeding often damage the areas in the vicinities of the southern limit line's iron-railing. This study aimed to prepare basic data for the restoration of damaged barren vegetation. As a result of classifying vegetation communities based on indicator species, 10 communities were identified as follows: Duchesnea indica Community, Hosta longipes Community, Sedum kamtschaticum-Sedum sarmentosum Community, Potentilla anemonefolia Community, Potentilla fragarioides var. major Community, Prunella vulgaris var. lilacina Community, Dendranthema zawadskii var. latilobum-Carex lanceolata Community, Dendranthema zawadskii Community, Plantago asiatica-Trifolium repens Community, and Ixeris stolonifera-Kummerowia striata Community. Highly adaptable species can characterize vegetation in barren areas to environment disturbances because artificial disturbances such as soil erosion, soil compaction, topography change, and forest fires caused by military activities frequently occur in the barren areas within the southern limit line. Most of the dominant species in the communities are composed of plants that are commonly found in the roads, roadsides, bare soil, damaged areas, and grasslands throughout South Korea. Currently, the vegetation in barren areas in the vicinities of the DMZ is in the early ecological succession form that develops from bare soil to herbaceous vegetation. Since dominant species distributed in barren land can grow naturally without special maintenance and management, the data can be useful for future restoration material development or species selection.

Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change (녹나무과 상록활엽수 자생지 기후특성과 기후변화에 따른 분포 변화)

  • Yu, Seung-Bong;Kim, Byung-Do;Shin, Hyun-Tak;Kim, Sang-Jun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.503-514
    • /
    • 2020
  • Climate change leads to changes in phenological response and movement of plant habitats. Korea's evergreen broad-leaved forest has widened its distribution area compared for the past 20 years, and the range of its native habitats is moving northward. We analyzed climate indices such as the warmth index, the cold index, the lowest temperature in the coldest month, and the annual average temperature, which are closely related to vegetation distribution, to predict the change in the native habitat of Lauraceae evergreen broad-leaved trees. We also analyzed the change and spatial distribution to identify the habitat climate characteristics of 8 species of Lauraceae evergreen broad-leaved trees distributed in the warm temperate zone in Korea. Moreover, we predicted the natural habitat change in the 21st century according to the climate change scenario (RCP 4.5/8.5), applying the MaxEnt species distribution model. The monthly average climate index of the 8 species of Lauraceae evergreen broad-leaved trees was 116.9±10.8℃ for the temperate index, the cold index 3.9±3.8℃, 1495.7±455.4mm for the annual precipitation, 11.7±3.5 for the humidity index, 14.4±1.1℃ for the annual average temperature, and 1.0±2.1℃ for the lowest temperature of winter. Based on the climate change scenario RCP 4.5, the distribution of the Lauraceae evergreen broad-leaved trees was analyzed to expand to islands of Jeollanam-do and Gyeongsangnam-do, adjacent areas of the west and south coasts, and Goseong, Gangwon-do on the east coast. In the case of the distribution based on the climate change scenario RCP 8.5, it was analyzed that the distribution would expand to all of Jeollanam-do and Gyeongsangnam-do, and most regions except for some parts of Jeollabuk-do, Chungcheongnam-do, Gyeongsangbuk-do, and the capital region. For the conservation of Lauraceae evergreen broad-leaved trees to prepare for climate change, it is necessary to establish standards for conservation plans such as in-situ and ex-situ conservation and analyze various physical and chemical characteristics of native habitats. Moreover, it is necessary to preemptively detect changes such as distribution, migration, and decline of Lauraceae evergreen broad-leaved trees following climate change based on phenological response data based on climate indicators and establish conservation management plans.

Potential Habitat Area Based on Natural Environment Survey Time Series Data for Conservation of Otter (Lutra lutra) - Case Study for Gangwon-do - (수달의 보전을 위한 전국자연환경조사 시계열 자료 기반 잠재 서식적합지역 분석 - 강원도를 대상으로 -)

  • Kim, Ho Gul;Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.1
    • /
    • pp.24-36
    • /
    • 2021
  • Countries around the world, including the Republic of Korea, are participating in efforts to preserve biodiversity. Concerning species, in particular, studies that aim to find potential habitats and establish conservation plans by conducting habitat suitability analysis for specific species are actively ongoing. However, few studies on mid- to long-term changes in suitable habitat areas are based on accumulated information. Therefore, this study aimed to analyze the time-series changes in the habitat suitable area and examine the otters' changing pattern (Lutra lutra) designated as Level 1 endangered wildlife in Gangwon-do. The time-series change analysis used the data on otter species' presence points from the 2nd, 3rd, and 4th national natural environment surveys conducted for about 20 years. Moreover, it utilized the land cover map consistent with the survey period to create environmental variables to reflect each survey period's habitat environment. The suitable habitat area analysis used the MaxEnt model that can run based only on the species presence information, and it has been proven to be reliable by previous studies. The study derived the habitat suitability map for otters in each survey period, and it showed a tendency that habitats were distributed around rivers. Comparing the response curves of the environmental variables derived from the modeling identified the characteristics of the habitat favored by otters. The examination of habitats' change by survey period showed that the habitats based on the 2nd National Natural Environment Survey had the widest distribution. The habitats of the 3rd and 4th surveys showed a tendency of decrease in area. Moreover, the study aggregated the analysis results of the three survey periods and analyzed and categorized the habitat's changing pattern. The type of change proposed different conservation plans, such as field surveys, monitoring, protected area establishment, and restoration plan. This study is significant because it produced a comprehensive analysis map that showed the time-series changes of the location and area of the otter habitat and proposed a conservation plan that is necessary according to the type of habitat change by region. We believe that the method proposed in this study and its results can be used as reference data for establishing a habitat conservation and management plan in the future.

Effects of Traffic Volume and Air Quality on the Characteristic of Urban Park Soil (교통량과 대기질이 도시 공원 토양 특성에 미치는 영향)

  • Joo, Sunyoung;Lee, Hyunjin;Jeon, Juhui;Seo, Inhye;Yoo, Gayoung
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • This study aims to understand how mobile and stationary air pollution sources affect the air quality and soil properties in urban parks. We selected three sites of urban parks in Seoul as follows: Ha-neul Park in Mapo-gu (Site_M), Ill-won Eco-Park in Gangnam-gu (Site_G), and Yangjae Citizen's Forest in Seocho-gu (Site_Y), and compared the results of each site's traffic volume, air quality concentration, and soil analysis. Traffic volume was high in Site_M, followed by Site_G and Y; Site_M and G were closer to the resource recovery facility than Site_Y. Hence, we hypothesized that PM and NO2 concentrations in the atmosphere were higher in Site_M than Site_G and Y, causing different soil nitrogen content among sites due to different atmospheric deposition. Consistent with our hypothesis, the concentrations of PM2.5 and NO2 were higher in Site_M and G than Site_Y, while Site_Y had higher PM10 than other sites. The soil NO3- contents showed no significant difference among three sites, whereas the soil NH4+ content was extremely high in Site_Y. This high content of soil NH4+ is thought to be due to acidification from excessive fertilization. Lower soil pH of Site_Y further supported the evidence of heavy fertilization in this site. Overall nitrogen dynamics implies that soil nitrogen status is more influenced by park management such as fertilization rather than atmospheric deposition. Despite of lower soil NH4+ content of Site_M and G than Y, vegetation vitality looked similar among three sites. This indirectly indicates that excessive fertilizer input in urban park management needs to be reconsidered. This study showed that even if the air quality was different due to mobile and stationary sources, it did not directly affect the soil nitrogen nutrient status of the adjacent urban park.

Study on Plant Indicator Species of Picea jezoensis (Siebold & Zucc.) Carrière Forest by Topographic Characters - From China (Baekdu-san) to South Korea - (가문비나무림의 지형특성에 따른 식물 지표종에 관한 연구 - 중국 백두산 일대에서 남한까지 -)

  • Byeong-Joo, Park;Tae-Im, Heo;Jun-Gi, Byeon;Kwang-il, Cheon
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.388-408
    • /
    • 2022
  • This study was conducted to select the indicator species (plant) according to the topographical characteristics in the Picea jezoensis forests, endangered subalpine coniferous trees. In South Korea and China (close to Baekdusan), the southern tree line limit of Picea jezoensis has meaningful geographical and latitudinal values for analyzing the ecological characteristics of P. jezoensis forests. Latitude greatly affects the geographical values of plant ecology, and the difference in latitude and habitat affects the change in species composition in forests. With prolonged environmental change, the habitat of subalpine plants will become smaller, and the plants may become extinct. As the P. jezoensis forests of South Korea and China, in particular, are in danger of disappearing without protection, it is important to monitor the population and develop a conservation strategy. Eighty-seven circular plots were established in P. jezoensis forests in South Korea and China. Through processes such as MRPP-test and NMS ordination, indicator species were selected based on this, and basic data for biodiversity assessment were presented. As a result of the Indicator Species Analysis (ISA), 5 taxa were selected from the upperstory vegetation and 18 taxa from the understory vegetation at the altitude(p<0.05). Indicator species by aspect were analyzed as 3 taxa for upperstory vegetation and 16 taxa for understory vegetation (p<0.05). In the case of indicator species according to the slope, 6 taxa for upper vegetation and 24 taxa for understory vegetation were selected(p<0.05). As for the indicator species according to their habitat, 8 taxa in upper vegetation and 65 taxa on understory vegetation were selected. As a result of MRPP-test, it was analyzed that the species composition was heterogeneous in the group of understory vegetation than that of upperstory vegetation. As a result of NMS ordination, the correlation with environmental factors of indicator species was analyzed by rock exposure for upperstory vegetation and latitude for understory vegetation (cut off level=0.3).

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

A Study on the Characteristic of Habitat and Mating Calls in Korean Auritibicen intermedius (Hemiptera: Cicadidae) Using Bioacoustic Detection Technique (생물음향탐지기법을 활용한 한국 참깽깽매미 서식 및 번식울음 특성 연구)

  • Yoon-Jae Kim;Kyong-Seok Ki
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.592-602
    • /
    • 2022
  • This study aimed to check habitat distribution and analyze influencing factors by analyzing the mating calls of Auritibicen intermedius inhabiting limited locations in South Korea by applying bioacoustic detection techniques. The study sites were 20 protection areas nationwide. The mating call analysis period was 4 years from 2017 to 2021, excluding 2020. The bioacoustic recording system installed at each study site collected recordings of mating calls every day for 1 minute per hour. Climate data received from the Meteorological Agency, such as temperature, humidity, rainfall, cloudiness, and sunshine, were analyzed. The results of this study identified A. intermedius habitat only in four national parks in the highlands of Gangwon Province (Mt. Seorak, Mt. Odae, Mt. Chiak, and Mt. Taebak) out of 20 study sites. During the four years of study, the mating call period of A. intermedius was between August 5 and September 28, and the duration of the mating call was 31 to 52 days. The temperature analysis during the appearance period of A. intermedius showed that A. intermedius mainly produced mating calls at temperatures between 13.1℃ and 35.3℃, and the average temperature during the circadian cycle of mating calls (09:00 to 16:00) was 24.4 to 24.9℃. The analysis of the circadian cycle of mating calls at four study sites where A. intermedius appeared in 2019 showed that A. intermedius produced mating calls from 06:00 to 16:00 and that they peaked around 11:00 to 12:00. During the appearance period of A. intermedius, four species appeared in common: Hyalessa maculaticollis, Meimuna opalifera, Graptopsaltria nigrofuscata, and Suisha coreana. A logistic regression analysis confirmed that sunlight was the environmental factor affecting the mating call of A. intermedius. Regarding interspecific influence, it was confirmed that A. intermedius exchanged interspecific influence with 4 other common species (H. maculaticollis, M. opalifera, G. nigrofuscata, and S. coreana). The above results confirmed that A. intermedius habitats were limited in the highlands of Gangwon Province highlands in Korea and produced mating calls at a lower temperature compared to other species. These results can be used as basic data for future research on A. intermedius in Korea.

Distyly and Population Size of Abeliophyllum distichum Nakai, an Endemic Plant in Korea (한국 특산식물 미선나무의 이화주성(Distyly) 및 개체군 크기)

  • So-Dam Kim;Ae-Ra Moon;Shin-Young Kwon;Seok-Min Yun;Hwi-Min Kim;Dong-Hyoung Lee;Sung-Won Son
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.639-650
    • /
    • 2022
  • Abeliophyllum distichum Nakai, a rare plant with distylous characteristics, is native to certain parts of the Korean Peninsula. It is registered on the IUCN Red List of Threatened Species as a globally endangered plant. This study was conducted to establish an appropriate local conservation management plan suitable for future A. distichum populations by comparing and analyzing the flowering characteristics and population size according to distyly based on the results of quantitative surveys in 14 regions, including 8 areas with native populations of A. distichum and 6 natural monument populations. The number of individuals appearing in each population group was surveyed, and the flowering individuals were identified by style as being either pin or thrum flower types as they were being examined and recorded on the site. In total, 13,130 individuals of A. distichum (7,003 flowering and 6,127 non-flowering individuals) were recorded, but the balance of the number of pin- and thrum-flowered individuals in each population was not significant (p<0.05), indicating an imbalanced state. In particular, the Yeongdong (YD) population was very disproportionate compared to other populations, suggesting that its genetic diversity was low and the possibility of inbreeding was high. The average flowering and fruiting rates by management unit were much higher in the natural monument populations (89.2% and 55.3%, respectively) than in the natural habitat populations (39.0% and 8.5%, respectively). It may be due to a difference in reproductive growth resulting from light inflow into the forest caused by the upper crown closure. The area of occupation (AOO) of A. distichum on the Korean Peninsula covered an area of 23,224.5 m2. Although the natural monument population was smaller than the natural habitat population, its density was higher, likely as a result of the periodic management of natural monument populations, where the installation of protective facilities in certain areas restricts population spread. Conservation of A. distichum populations requires removing the natural monument populations suspected of anthropogenic and genetic disturbances and expanding the conservation priority population by designating new protected areas. Although the habitats of natural monument populations are managed by the Cultural Heritage Administration and local governments, there are no agencies that are responsible for managing natural habitat populations. Therefore, institutional improvement in the overall management of A. distichum should be prioritized.

Distributional Characteristics of the Population and Assessment of the Conservation Status of Michelia Compressa on Korea (국내 초령목 개체군의 분포특성과 보전지위평가)

  • Jong-Gab Kim;Dae-Shin Kim;Su-Kyoung Kim;Hyun-Mi Jeong;Young-Ki Song;Sung-Won Son;Jung-Goon Koh
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.3
    • /
    • pp.182-191
    • /
    • 2023
  • This study was carried out to identify the distribution and growth characteristics and evaluate the conservation status of the Michelia compressa Maxim., a rare and endangered wild plant II, in the habitats in Korea. A total of 314 individuals were found in the natural habitats of Heuksan Island and Jeju Island and were divided into four populations. About 45.9% (144 individuals) were distributed in the range of 401m~500m above sea level. The average height of trees was 2.7(±4.8)m, the diameter at breast height was 12.6(±13.9)cm, and the number of branches was 1.0(±0.5) on average. 54.3% of the sapling individuals of M. compressa were distributed within a radius of 30 m from the mother tree, 25.8% were distributed between 31 m through 40 m, and most (90.1%) were distributed within a radius of 60 m. The fact that sapling individuals of M. compressa are not identified even around some mature individuals and appear only in extremely limited areas is estimated to be closely related to the growth conditions as well as the environment of the natural habitats. The dispersal of M. compressa is presumed to be related to the birds and natural seedlings because water puddles, a resting place for birds beyond the range of natural seedlings, characterize its habitats. The IUCN Red List evaluation criteria at the regional and national level of M. compressa corresponds to the Critically Endangered category, and the domestic population under the category of "CR B2ab(v); C2a(i); D."