• Title/Summary/Keyword: Foreign NPPs

검색결과 9건 처리시간 0.019초

해외 JIT에 수록된 운전경험 분석 (An Analysis of Operating Experience Reports on the Foreign JIT)

  • 이상훈;김제헌;송태영
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.70-74
    • /
    • 2014
  • An Operating Experience Report(OER) has written about events and accidents happened at a Nuclear Power Plant(NPP). The purpose of publishing the OER is to prevent the similar event or accident repeatedly by spreading the experience of a single plant to other plants personnel. In this paper, it is analyses that the foreign NPPs' OERs on JIT published by the International Nuclear Agency(WANO, INPO, COG, BE). The analysis introduced in this paper is performed along with the various factors such as type of work, root-cause, and equipment. The root-cause analysis about the OERs shows that the Human-error is the major factor in foreign NPPs, but on the other hand equipment problem is the main part of the Domestic NPPs. The ratio of the foreign NPP's OERs on JIT according to the type of work was applied to KHNP-JIT developed nowadays for the first time in KOREA.

해외원전 비계획적 방출 및 한국의 환경감시 현황 분석 (Review of Unplanned Release at Foreign Nuclear Power Plants and Radiological Monitoring at Korean Power Plants)

  • 박수찬;함박눈;권장순;조동건;정지혜;권만재
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권4호
    • /
    • pp.1-15
    • /
    • 2018
  • Despite of safety issues related to radiological hazards, 31 countries around the world are operating more than 450 nuclear power plants (NPPs). To operate NPPs safely, safety regulations from radiation protection organizations were developed and adopted in many countries. However, many cases of radionuclide releases at foreign NPPs have been reported. Almost all commercial NPPs routinely release radioactive materials to the surrounding environments as liquid and gas phases under control. These releases are called 'planned releases' which are planned, regularly monitored, and well documented. Meanwhile, the releases focused in this review, called 'unplanned releases', are neither planned nor monitored by regulatory and/or protection organizations. NPPs are generally composed of various structures, systems and components (SSCs) for safety. Among them, the SSCs near reactors are closely related to safety of NPPs, and typically fabricated to comply with stringent requirements. However, some non-safety related SSCs such as underground pipes may be constructed only according to commercial standards, causing the leakage of radioactive fluids usually containing tritium ($^3H$). This paper discusses SSCs of NPPs and introduces several cases of unplanned releases at foreign NPPs. The current regulation on the environmental radiological surveillance and assessment around the NPPs in South Korea are also examined.

국내 원자력발전소 불시정지 이력에 근거한 PSA 초기사건 빈도 분석 (Analysis of Initiating Event Frequencies for PSA Based on the Unexpected Reactor Trip Events in KOREA)

  • 이윤환;정원대
    • 한국안전학회지
    • /
    • 제14권1호
    • /
    • pp.177-184
    • /
    • 1999
  • PSA(Probabilistic Safety Assessment) methodology is widely used on assessing the safety of Nuclear Power Plants(NPPs) quantitatively in the domestic nuclear field. Initiating event frequencies are absolutely needed to conduct PSA, and they considerably affect PSA results. There is no domestic database where domestic trip event cases are reflected, so they are used to assess the safety of NPPs that are from the foreign database. In this paper, operating experience data from the Korean NPPs was collected and analyzed for the trip event cases, which are necessary to determine the initiating events and their frequencies. Korean NPPs have experienced five of 16 initiating events, which we LOFW. LOCV, LOCCW, LOOP and GTRN as a result of analyzing the trip event cases. Initiating frequencies based on the domestic trip event cases are analyzed, and they are similar to that from the foreign database.

  • PDF

최근 5년간 국내원전 운전경험보고서 분석 (An Analysis of Operating Experience Reports Published in the Domestic Nuclear Power Plants for Resent 5 Years)

  • 이상훈;김제헌;허남용
    • 한국압력기기공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.35-39
    • /
    • 2013
  • The Operating Experience Report(OER) has written about the event and accident happened at a Nuclear Power Plant(NPP). The purpose of publishing the OER is to prevent the similar event or accident repeatedly by spreading the experience of a single plant to other plants personnel. Before initiating the analysis mentioned in this paper, 2,298 review reports for the same number of OER published from 2007 to June 2012 have been written to achieve the correct and objective statistics. The analysis introduced in this paper is performed with the various factors such as year, plant type, equipment, type of work, root-cause. The root-cause analysis is showed that the equipment problem is the major factor in domestic NPPs, but on the other hand human-error is the main part of the foreign NPPs. Moreover, while the number of the man-made event is decreasing, the equipment-made event is rapidly increasing in domestic NPPs.

원자력발전소 적용 고밀도 폴리에틸렌 배관의 맞대기 융착절차 및 검증절차 분석 (Butt-fusing Procedures and Qualifications of High Density Polyethylene Pipe for Nuclear Power Plant Application)

  • 오영진;박흥배;신호상
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.1-7
    • /
    • 2013
  • In nuclear power plants, lined carbon steel pipes or PCCPs (pre-stressed concrete cylinder pipes) have been widely used for sea water transport systems. However, de-bonding of linings and oxidation of PCCP could make problems in aged NPPs (nuclear power plants). Recently at several NPPs in the United States, the PCCPs or lined carbon steel pipes of the sea water or raw water system have been replaced with HDPE (high density polyethylene) pipes, which have outstanding resistance to oxidation and seismic loading. ASME B&PV Code committee developed Code Case N-755, which describes rules for the construction of buried Safety Class 3 polyethylene pressure piping systems. Although US NRC permitted HDPE materials for Class 3 buried piping, their permission was limited to only 10-year operation because of several concerns including the quality of fusion zone of HDPE. In this study, various requirements for fusion qualification test of HDPE and some regulatory issues raised during HDPE application review in foreign NPPs are introduced.

ToSPACE 프로그램을 이용한 FAC 해석결과와 실험결과 비교 (Comparison Between FAC Analysis Result Using ToSPACE Program and Experimental Result)

  • 황경모;윤훈;서혁기;정의제;김경모;김동진
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.131-137
    • /
    • 2020
  • A number of piping components in the secondary system of nuclear power plants (NPPs) are exposed to aging mechanisms, such as flow-accelerated corrosion (FAC), cavitation, flashing, solid particle erosion, and liquid droplet impingement erosion. Those mechanisms may lead to thinning, leaking, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 in the USA in 1986 and Mihama unit 3 in Japan in 1994, pipe wall thinning management has emerged as one of the most important issues in the nuclear industry. To manage pipe wall thinning, a foreign program has been utilized for NPPs in Korea since 1996. As our experience and knowledge of pipe wall thinning management have accumulated, our program needs to reflect our experience, requests from users, and the result of recent experiments using Flow Accelerated Corrosion Testing System (FACTS). FACTS is the empirical experimental facility developed by Korea Atomic Energy Research Institute (KAERI) for tests. Accordingly, KEPCO-E&C developed a 3D-based pipe wall thinning management program called ToSPACE in 2016. This paper describes a comparison between the FAC analysis results using ToSPACE and the experimental results using FACTS to verify their applicability to pipe wall thinning management in NPPs.

증기발생기 전열관 와전류검사용 국내 개발 보빈탐촉자 적용성 분석 (Determination of Availability of Domestic Developed Bobbin Probe for Steam Generator Tube Inspection)

  • 김인철;주경문;문용식
    • 한국압력기기공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.19-25
    • /
    • 2011
  • Steam Generator(SG) tube is an important component of Nuclear Power Plant(NPP), which is the pressure boundary between the primary and secondary systems. The integrity of SG tube has been confirmed by the eddy current test every outage. The eddy current technique adopting bobbin probe is currently the primary technique for the steam generator tubing integrity assesment. The bobbin probe is one of the essential components which consist of the whole ECT examination system and provides us a decisive data for the evaluation of tube integrity. Until now, all of the ECT bobbin probes in Korea which is necessary to carry out inspection are imported from overseas. However, KHNP has recently developed the bobbin probe design technology and transferred it to domestic manufacturers to fabricate the probes. This study has been conducted to establish technical requirements applicable to the steam generator tube inspection using the bobbin probes fabricated by the domestic manufactures. The results have been compared with the results obtained by using foreign probe to identify the availability to the steam generator tube inspection. As a result, it is confirmed that the domestic bobbin probe is generally applicable to SG tube inspection in the NPPs.

마코프 모델을 이용한 방사선 방어의 최적화 (Optimization of Radiation Protection Using Markov Model)

  • 정진엽;이건재
    • Journal of Radiation Protection and Research
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 1989
  • 방사선 방어를 위한 방안을 결정하는데 도움을 주기 위해서는 각종 방사선 방어 최적화 방안들 사이에 정량적인 비교를 할 수 있는 해석적 방법이 필요하다. 본 논문에서는 발전소에서 행해지고 있는 검사, 시험 및 보수가 방사선 방어에 미치는 영향을 평가할 수 있는 동적 마코프 모델의 개념을 도입하였다. 마코프 모델의 응용을 다루기 위해 예로 든 증기발생기 전열관 파열에서는 고리 2호기와 외국의 자료에 기초해 비용과 피폭 선량을 줄이기 위한 증기발생기의 최적 검사주기를 산출하였으며 그 결과 피폭 선량은 비용에 비해 그 기여도가 매우 낮은 것으로 나타났다. 예제 계산이 이용된 마코프 모델은 자료를 좀 더 보강함으로써 국내 발전소에도 쉽게 적용할 수 있으며 방사선 방어의 최적화를 위한 여러 가지 대안의 비교 우위를 평가하는 데에도 이용할 수 있다.

  • PDF

원전 해체 콘크리트 폐기물의 재활용에 대한 고찰 (A Review on the Recycling of the Concrete Waste Generate from the Decommissioning of Nuclear Power Plants)

  • 전지훈;이우춘;이상우;김순오
    • 자원환경지질
    • /
    • 제54권2호
    • /
    • pp.285-297
    • /
    • 2021
  • 전세계적으로 해체 대상 원자력 시설이 증가하고 있으며, 이러한 원자력 시설을 해체하게 되면 수십만 톤의 콘크리트, 토양, 금속 등의 폐기물이 발생한다. 따라서 고상 방사성 폐기물 감용 및 재활용 기술에 대한 기존 연구를 면밀히 검토할 필요가 있다. 폐콘크리트 미분말은 소성 및 분쇄와 같은 추가적인 공정을 통하여 재수화 반응이 일어나며, 시멘트 수화 반응 및 고화체 압축강도에 영향을 미치는 주요 화합물인 aluminate (C3A), C4AF, C3S, ��-C2S가 생성된다. 기존 연구를 통하여 폐콘크리트 미분말을 재생 시멘트로 재활용할 수 있음을 확인하였으나, 골재의 혼입으로 인한 고화체의 강도 저하와 같은 문제점에 대한 해결방안은 현재까지 연구되지 않았다. 이러한 문제점을 보완하기 위하여 산업부산물인 고로슬래그, 비산회를 성분 조정재로 혼합하여 재생 시멘트의 성능을 증진시키는 연구가 수행되었으며, 고화체의 압축강도가 증진되는 것을 확인하였다. 그러나, 폐토양을 재활용한 비소성 시멘트의 제조에 대한 연구는 많이 수행되지 않았다. 폐토양 내 함유된 일라이트와 제올라이트는 방사성 핵종에 대한 흡착능이 우수하며, 이를 고화재로 재활용하면 원전 해체 폐기물의 부피를 저감함과 동시에 방사성 폐기물을 안전하게 담지할 수 있는 효과를 도출할 수 있다. 이러한 이유에서 폐토양 내 점토 광물을 이용한 비소성 시멘트의 제조에 대한 연구가 필요하다. 본 연구에서는 기존에 수행된 국내외 연구를 통하여 원전 해체 폐기물인 콘크리트의 재생 시멘트로서 재활용 가능성 및 개선 방안과 더불어 폐토양 내 점토 광물을 이용한 비소성 시멘트 제조에 대한 연구 필요성에 대하여 고찰하였다.