Foreground estimation in object segmentation has been an important issue for last few decades. In this paper we propose a GrabCut based automatic foreground estimation method using block clustering. GrabCut is one of popular algorithms for image segmentation in 2D image. However GrabCut is semi-automatic algorithm. So it requires the user input a rough boundary for foreground and background. Typically, the user draws a rectangle around the object of interest manually. The goal of proposed method is to generate an initial rectangle automatically. In order to create initial rectangle, we use Gabor filter and Saliency map and then we use 4 features (amount of area, variance, amount of class with boundary area, amount of class with saliency map) to categorize foreground and background. From the experimental results, our proposed algorithm can achieve satisfactory accuracy in object segmentation without any prior information by the user.
물체를 3차원으로 모델링 하는 데에 있어서 기존의 연구들은 주로 모델링할 물체 외에 다른 방해 요소가 없는 제한된 환경에서 작업을 수행하였다. 이러한 환경 제약이 없는 일상적인 생활환경에서 물체를 모델링하기 위해서는 관심영역 외의 주변 물체들이 복잡하게 섞여있고 빈번하게 변하는 상황을 고려해야 한다. 본 논문에서는 스테레오 비전 카메라를 이용하여 동적인 환경에서 대상 물체가 포함된 전경 영역을 배경으로부터 분리하고 지속적으로 추적하는 방법을 제안한다. 스테레오 영상으로부터 획득된 거리 정보를 이용하여 색상 정보를 이용할 때보다 환경변화에 강인하게 전경 영역을 분리할 수 있다. 또한 시간적으로 연속된 두 영상에 나타나는 전경 영역은 위치나 상태에 따른 변화가 크지 않으므로 관심영역의 상대적인 거리 분포를 비교하여 추적할 수 있다. 다양한 조건의 동적인 환경에서 전경 영역을 분리 및 추적하는 실험을 통해 본 논문에서 제안하는 방법의 성능을 평가한다. 이를 통해 분리 및 추적된 전경 영역으로부터 물체 영역을 추출하여 3차원 물체 모델링이 가능함을 보인다.
Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.
최근 개발된 영상 압축 표준인 MPEG-4 Part 2는 임의의 영상 객체를 처리할 수 있는 최신의 기능을 포함한다. 이러한 기능을 지원하기 위해서는 효과적인 객체 추출 기술이 요구된다. 본 논문에서는 영상 내에서 실시간으로 객체를 추출해 낼 수 있는 알고리즘을 제안한다. 제안된 알고리즘은 두 단계로 구성된다. 첫 번째 단계는 한 프레임의 영상을 시공간적 watershed transform을 이용하여 여러 영역으로 분할하는 것이고, 두 번째 단계는 분할된 영역 정보를 바탕으로 객체를 추출해내는 것이다. 실시간 처리를 위해서 제안된 알고리즘은 하드웨어와 소프트웨어로 분할하여 구현하고, 계산량이 집중된 연산 부분을 하드웨어 가속기를 사용하여 처리한다. 실험 결과 제안된 시스템은 QCIF 크기의 영상을 초당 15 frame 이상의 속도로 처리하면서도, 정확한 객체 추출 결과를 보였다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
제13권4호
/
pp.315-321
/
2009
In this paper, a level set based energy functional is proposed, the minimization of which results in simultaneous reference background image modeling and foreground segmentation. Due to the mutual constraint of the two processes, a good estimate of the background can be obtained with a small number of frames, and due to the use of the level set, an Euler-Lagrange equation that directly solves the problem can be derived.
초음파 영상 진단 장치에서 획득한 데이터로부터 진단 객체를 추출하기 위한 영상 분할은 질병의 효과적인 진단을 위하여 필수적인 전처리 과정으로 인식되고 있으며, 지금까지 많은 분할 기법들이 연구되고 있다. 본 연구에서는 혈관 초음파 영상의 다양한 응용 및 진단법 개발을 위하여 기초 전처리과정으로서 graph cut 알고리즘에 의한 상호적인 영상분할법을 제시한다. 일반영상 및 혈관 초음파 영상에 대하여 전경(foreground)과 배경(background)의 제약조건을 주고 영상분할 처리하여, 원하는 object에 대한 분할 결과를 얻었다. 향후, 이러한 일련의 처리 과정이 실시간으로 처리되면 새로운 초음파 진단법으로 발전시켜 나갈 수 있을 것으로 사료된다.
본 논문에서 우리는 실시간 성능이 요구되는 비디오 화상회의 시스템을 위해 사전정보 없이 정확하면서도 완전히 자동으로 비디오 객체를 추출하는 방법을 제안한다. 제안하는 방법은 두 단계로 이루어진다: 1) 초기 프레임에서의 정확한 객체 추출, 2) 객체 추출 결과를 이용한 그 이후 프레임에서의 실시간 객체 추출. 초기 프레임에서의 객체 추출은 초기 프레임들의 차영상으로부터 구한 에지들을 누적시킨 누적 에지맵 생성으로부터 시작된다. 즉, 객체의 초기 움직임의 누적으로부터 객체의 형상을 추측하고자 하는 것이다. 이 추측된 형상은 그래프 컷(Graph-Cut) 영상 분할을 위한 객체 씨드(seeds)와 배경 씨드를 할당하는데 이용된다. 그래프 컷 기반 객체 추출 이후 프레임부터는 객체 추출 결과와 연속된 프레임의 차영상의 에지맵을 이용하여 실시간 객체 추출이 수행된다. 실험결과를 통해 제안하는 방법이 이전 연구들과 달리 VGA 크기의 비디오에 대해서도 실시간으로 동작함을 보이고, 따라서 몰입적인 비디오 화상회의 시스템의 개발을 위한 유용한 도구임을 보이고자 한다.
본 논문에서는 색상 카메라와 Time-of-Flight (TOF) 깊이 카메라를 이용해 촬영된 장면에서 전경 영역을 분리하고 영상의 고해상도 깊이 정보를 구하는 방법에 대해 제안한다. 깊이 카메라는 장면의 깊이 정보를 실시간으로 측정할 수 있는 장점이 있지만 잡음과 왜곡이 발생하고 색상 영상과의 상관도도 떨어진다. 따라서 이를 색상 영상과 함께 사용하기 위한 색상 영상의 영역화 및 깊이 카메라 영상의 3차원 투영(warping) 작업, 깊이 경계 영역 탐색 등을 진행한 후, 전경의 객체를 분리하고, 객체와 배경에 대하여 깊이 값 계산한다. 깊이 카메라로부터 얻은 초기 깊이 정보를 이용하여 색상 영상에서 구해진 깊이 맵은 기존의 방법인 스테레오 정합 등의 방법보다 우수한 성능을 나타내었고, 무늬가 없는 영역이나 객체 경계 영역에서도 정확한 깊이 정보를 구할 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권6호
/
pp.2669-2688
/
2016
An efficient and effective unsupervised single moving object detection framework is presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine strategy to detect and segment the foreground from the background. The superpixel level coarse segmentation reduces the complexity of subsequent processing, and the pixel level refinement improves the segmentation accuracy. A distance measurement is devised in the coarse segmentation stage to measure the similarities between generated superpixels, which can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement in the fine segmentation stage. According to the experiments, our algorithm is effective and efficient, and favorable results can be achieved compared with state-of-the-art methods.
Journal of information and communication convergence engineering
/
제8권4호
/
pp.466-471
/
2010
We have proposed a method to detect and track moving ships using position from Radar and image processor. Real-time segmentation of moving regions in image sequences is a fundamental step in the radar-camera integrated system. Algorithms for segmentation of objects are implemented by composing of background subtraction, morphologic operation, connected components labeling, region growing, and minimum enclosing rectangle. Once the moving objects are detected, tracking is only performed upon pixels labeled as foreground with reduced additional computational burdens.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.