• Title/Summary/Keyword: Foreground detection

Search Result 118, Processing Time 0.029 seconds

An Improved Method for Detection of Moving Objects in Image Sequences Using Statistical Hypothesis Tests

  • Park, Jae-Gark;Kim, Munchurl;Lee, Myoung-Ho;Ahn, Chei-Teuk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.171-176
    • /
    • 1998
  • This paper resents a spatio-temporal video segmentation method. The algorithm segments each frame of video sequences captured by a static or moving camera into moving objects (foreground) and background using a statistical hypothesis test. In the proposed method, three consecutive image frames are exploited and a hypothesis testing is performed by comparing two means from two consecutive difference images, which results in a T-test. This hypothesis test yields change detection mask that indicates moving areas (foreground) and non-moving areas (background). Moreover, an effective method for extracting object mask form change detection mask is proposed.

  • PDF

Animal Tracking in Infrared Video based on Adaptive GMOF and Kalman Filter

  • Pham, Van Khien;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.78-87
    • /
    • 2016
  • The major problems of recent object tracking methods are related to the inefficient detection of moving objects due to occlusions, noisy background and inconsistent body motion. This paper presents a robust method for the detection and tracking of a moving in infrared animal videos. The tracking system is based on adaptive optical flow generation, Gaussian mixture and Kalman filtering. The adaptive Gaussian model of optical flow (GMOF) is used to extract foreground and noises are removed based on the object motion. Kalman filter enables the prediction of the object position in the presence of partial occlusions, and changes the size of the animal detected automatically along the image sequence. The presented method is evaluated in various environments of unstable background because of winds, and illuminations changes. The results show that our approach is more robust to background noises and performs better than previous methods.

Image Processed Tracking System of Multiple Moving Objects Based on Kalman Filter

  • Kim, Sang-Bong;Kim, Dong-Kyu;Kim, Hak-Kyeong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.427-435
    • /
    • 2002
  • This paper presents a development result for image processed tracking system of multiple moving objects based on Kalman filter and a simple window tracking method. The proposed algorithm of foreground detection and background adaptation (FDBA) is composed of three modules: a block checking module(BCM), an object movement prediction module(OMPM), and an adaptive background estimation module (ABEM). The BCM is processed for checking the existence of objects. To speed up the image processing time and to precisely track multiple objects under the object's mergence, a concept of a simple window tracking method is adopted in the OMPM. The ABEM separates the foreground from the background in the reset simple tracking window in the OMPM. It is shown through experimental results that the proposed FDBA algorithm is robustly adaptable to the background variation in a short processing time. Furthermore, it is shown that the proposed method can solve the problems of mergence, cross and split that are brought up in the case of tracking multiple moving objects.

SIMULTANEOUS FOREGROUND AND BACKGROUND SEGMENTATION WITH LEVEL SET FUNCTION

  • Lee, Suk-Ho
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.4
    • /
    • pp.315-321
    • /
    • 2009
  • In this paper, a level set based energy functional is proposed, the minimization of which results in simultaneous reference background image modeling and foreground segmentation. Due to the mutual constraint of the two processes, a good estimate of the background can be obtained with a small number of frames, and due to the use of the level set, an Euler-Lagrange equation that directly solves the problem can be derived.

  • PDF

Study on the 3D Modeling Data Conversion Algorithm from 2D Images (2D 이미지에서 3D 모델링 데이터 변환 알고리즘에 관한 연구)

  • Choi, Tea Jun;Lee, Hee Man;Kim, Eung Soo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.479-486
    • /
    • 2016
  • In this paper, the algorithm which can convert a 2D image into a 3D Model will be discussed. The 2D picture drawn by a user is scanned for image processing. The Canny algorithm is employed to find the contour. The waterfront algorithm is proposed to find foreground image area. The foreground area is segmented to decompose the complex shapes into simple shapes. Then, simple segmented foreground image is converted into 3D model to become a complex 3D model. The 3D conversion formular used in this paper is also discussed. The generated 3D model data will be useful for 3D animation and other 3D contents creation.

Foreground Extraction in Thermal Videos Based on Selective Histogram Bins (선택적 히스토그램 빈 기반 열화상 영상 전경 추출)

  • Yu, Gwang-Hyun;Zaheer, Muhammd Zaigham;Kim, Jin-Young;Sin, Do-Seong
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.757-770
    • /
    • 2018
  • Foreground extraction is the most significant step in thermal imaging based surveillance systems. This step needs to be efficient in terms of time and memory consumption in order for the system to provide real time results but usually this efficiency reciprocates with the accurateness of the ROI detection. In this study, novel selective histogram bins based two background & foreground separation approaches for thermal videos processing have been proposed which exploit the temporal-consistency property of the thermal images in a given environment and can save over 80% memory than their simplest counterpart temporal median filtering.

An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance (지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Codebook-Based Foreground Extraction Algorithm with Continuous Learning of Background (연속적인 배경 모델 학습을 이용한 코드북 기반의 전경 추출 알고리즘)

  • Jung, Jae-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • Detection of moving objects is a fundamental task in most of the computer vision applications, such as video surveillance, activity recognition and human motion analysis. This is a difficult task due to many challenges in realistic scenarios which include irregular motion in background, illumination changes, objects cast shadows, changes in scene geometry and noise, etc. In this paper, we propose an foreground extraction algorithm based on codebook, a database of information about background pixel obtained from input image sequence. Initially, we suppose a first frame as a background image and calculate difference between next input image and it to detect moving objects. The resulting difference image may contain noises as well as pure moving objects. Second, we investigate a codebook with color and brightness of a foreground pixel in the difference image. If it is matched, it is decided as a fault detected pixel and deleted from foreground. Finally, a background image is updated to process next input frame iteratively. Some pixels are estimated by input image if they are detected as background pixels. The others are duplicated from the previous background image. We apply out algorithm to PETS2009 data and compare the results with those of GMM and standard codebook algorithms.

New Scheme for Smoker Detection (흡연자 검출을 위한 새로운 방법)

  • Lee, Jong-seok;Lee, Hyun-jae;Lee, Dong-kyu;Oh, Seoung-jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1120-1131
    • /
    • 2016
  • In this paper, we propose a smoker recognition algorithm, detecting smokers in a video sequence in order to prevent fire accidents. We use description-based method in hierarchical approaches to recognize smoker's activity, the algorithm consists of background subtraction, object detection, event search, event judgement. Background subtraction generates slow-motion and fast-motion foreground image from input image using Gaussian mixture model with two different learning-rate. Then, it extracts object locations in the slow-motion image using chain-rule based contour detection. For each object, face is detected by using Haar-like feature and smoke is detected by reflecting frequency and direction of smoke in fast-motion foreground. Hand movements are detected by motion estimation. The algorithm examines the features in a certain interval and infers that whether the object is a smoker. It robustly can detect a smoker among different objects while achieving real-time performance.

The Development of Vehicle Counting System at Intersection Using Mean Shift (Mean Shift를 이용한 교차로 교통량 측정 시스템 개발)

  • Chun, In-Gook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.38-47
    • /
    • 2008
  • A vehicle counting system at intersection is designed and implemented using analyzing a video stream from a camera. To separate foreground image from background, we compare three different methods, among which Li's method is chosen. Blobs are extracted from the foreground image using connected component analysis and the blobs are tracked by a blob tracker, frame by frame. The primary tracker use only the size and location of blob in foreground image. If there is a collision between blobs, the mean-shift tracking algorithm based on color distribution of blob is used. The proposed system is tested using real video data at intersection. If some huristics is applied, the system shows a good detection rate and a low error rate.

  • PDF