• Title/Summary/Keyword: Foreground

Search Result 383, Processing Time 0.03 seconds

Effective Automatic Foreground Motion Detection Using the Statistic Information of Background

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.121-128
    • /
    • 2015
  • In this paper, we proposed and implemented the effective automatic foreground motion detection algorithm that detect the foreground motion by analyzing the digital video data that captured by the network camera. We classified the background as moving background, fixed background and normal background based on the standard deviation of background and used it to detect the foreground motion. According to the result of experiment, our algorithm decreased the fault detection of the moving background and increased the accuracy of the foreground motion detection. Also it could extract foreground more exactly by using the statistic information of background in the phase of our foreground extraction.

Foreground segmentation and tracking from sequential stereo images for 3D object modeling (3차원 물체 모델링을 위한 연속된 스테레오 이미지 상에서의 전경 영역 분리 및 추적)

  • Han, In-Kyu;Kim, Hyoung-Nyoun;Kim, Kyung-Koo;Park, Ji-Hyung
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The previous researches of 3D object modeling have been performed in a limited environment where a target object only exists. However, in order to model an object in the real environment, we need to consider a dynamic environment, which has various objects and a frequently changing background. Therefore, this paper presents a segmentation and tracking method for a foreground which includes a target object in the dynamic environment. By using depth information than color information, the foreground region can be segmented and tracked more robustly. In addition, the foreground region can be tracked on the sequential images by referring depth distributions of the foreground region because both the position and the status in the consecutive images of the foreground region are almost unchanged. Experimental results show that our proposed method can robustly segment and track the foreground region in various conditions of the real environment. Moreover, as an application of the proposed method, it is presented a method for modeling an object extracting the object regions from the foreground region that is segmented and tracked.

  • PDF

Foreground Extraction and Depth Map Creation Method based on Analyzing Focus/Defocus for 2D/3D Video Conversion (2D/3D 동영상 변환을 위한 초점/비초점 분석 기반의 전경 영역 추출과 깊이 정보 생성 기법)

  • Han, Hyun-Ho;Chung, Gye-Dong;Park, Young-Soo;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.11 no.1
    • /
    • pp.243-248
    • /
    • 2013
  • In this paper, depth of foreground is analysed by focus and color analysis grouping for 2D/3D video conversion and depth of foreground progressing method is preposed by using focus and motion information. Candidate foreground image is generated by estimated movement of image focus information for extracting foreground from 2D video. Area of foreground is extracted by filling progress using color analysis on hole area of inner object existing candidate foreground image. Depth information is generated by analysing value of focus existing on actual frame for allocating depth at generated foreground area. Depth information is allocated by weighting motion information. Results of previous proposed algorithm is compared with proposed method from this paper for evaluating the quality of generated depth information.

Panoramic Video Generation Method Based on Foreground Extraction (전경 추출에 기반한 파노라마 비디오 생성 기법)

  • Kim, Sang-Hwan;Kim, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.441-445
    • /
    • 2011
  • In this paper, we propose an algorithm for generating panoramic videos using fixed multiple cameras. We estimate a background image from each camera. Then we calculate perspective relationships between images using extracted feature points. To eliminate stitching errors due to different image depths, we process background images and foreground images separately in the overlap regions between adjacent cameras by projecting regions of foreground images selectively. The proposed algorithm can be used to enhance the efficiency and convenience of wide-area surveillance systems.

Interest area of game player through extraction of foreground Image (포그라인드 이미지 추출을 통한 게임 플레이어 관심 영역)

  • Lee, MyounJae
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.271-277
    • /
    • 2017
  • In the image processing, foreground image extraction is mainly applied to recognize a moving object or an object. In the game, the objects included in the foreground image can be mainly characters, non player characters, items, and the like. These objects can be the player's primary concern with objects that are the target of players' movement, attack, defense, and collection. In this background, this research is a study to extract players' interest areas. To this end, first, the foreground image is extracted. Second, the extracted foreground image is accumulated for a certain period of time, and the image is displayed as a result image. The accumulated foreground image according to the play time helps to know the location and frequency of screen appearance of game objects. This study can help players design their interest areas and design an efficient UX/UI.

Real-Time Foreground Segmentation and Background Substitution for Protecting Privacy on Visual Communication (화상 통신에서의 사생활 보호를 위한 실시간 전경 분리 및 배경 대체)

  • Bae, Gun-Tae;Kwak, Soo-Yeong;Byun, Hye-Ran
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.505-513
    • /
    • 2009
  • This paper proposes a real-time foreground segmentation and background substitution method for protecting the privacy on visual communication. Previous works on this topic have some problems with the color and shape of foreground and the capture device such as stereo camera. we provide a solution which can segment the foreground in real-time using fixed mono camera. For improving the performance of a foreground extraction, we propose the Temporal Foreground Probability Model (TFPM) by modeling temporal information of a video. Also we provide an boundary processing method for natural and smooth synthesizing that using alpha matte and simple post-processing method.

Unconstrained Object Segmentation Using GrabCut Based on Automatic Generation of Initial Boundary

  • Na, In-Seop;Oh, Kang-Han;Kim, Soo-Hyung
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.6-10
    • /
    • 2013
  • Foreground estimation in object segmentation has been an important issue for last few decades. In this paper we propose a GrabCut based automatic foreground estimation method using block clustering. GrabCut is one of popular algorithms for image segmentation in 2D image. However GrabCut is semi-automatic algorithm. So it requires the user input a rough boundary for foreground and background. Typically, the user draws a rectangle around the object of interest manually. The goal of proposed method is to generate an initial rectangle automatically. In order to create initial rectangle, we use Gabor filter and Saliency map and then we use 4 features (amount of area, variance, amount of class with boundary area, amount of class with saliency map) to categorize foreground and background. From the experimental results, our proposed algorithm can achieve satisfactory accuracy in object segmentation without any prior information by the user.

A Fast and Precise Blob Detection

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.23-29
    • /
    • 2009
  • Blob detection is an essential ingredient process in some computer applications such as intelligent visual surveillance. However, previous blob detection algorithms are still computationally heavy so that supporting real-time multi-channel intelligent visual surveillance in a workstation or even one-channel real-time visual surveillance in a embedded system using them turns out prohibitively difficult. In this paper, we propose a fast and precise blob detection algorithm for visual surveillance. Blob detection in visual surveillance goes through several processing steps: foreground mask extraction, foreground mask correction, and connected component labeling. Foreground mask correction necessary for a precise detection is usually accomplished using morphological operations like opening and closing. Morphological operations are computationally expensive and moreover, they are difficult to run in parallel with connected component labeling routine since they need much different processing from what connected component labeling does. In this paper, we first develop a fast and precise foreground mask correction method utilizing on neighbor pixel checking which is also employed in connected component labeling so that the developed foreground mask correction method can be incorporated into connected component labeling routine. Through experiments, it is verified that our proposed blob detection algorithm based on the foreground mask correction method developed in this paper shows better processing speed and more precise blob detection.

  • PDF

Background Prior-based Salient Object Detection via Adaptive Figure-Ground Classification

  • Zhou, Jingbo;Zhai, Jiyou;Ren, Yongfeng;Lu, Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1264-1286
    • /
    • 2018
  • In this paper, a novel background prior-based salient object detection framework is proposed to deal with images those are more complicated. We take the superpixels located in four borders into consideration and exploit a mechanism based on image boundary information to remove the foreground noises, which are used to form the background prior. Afterward, an initial foreground prior is obtained by selecting superpixels that are the most dissimilar to the background prior. To determine the regions of foreground and background based on the prior of them, a threshold is needed in this process. According to a fixed threshold, the remaining superpixels are iteratively assigned based on their proximity to the foreground or background prior. As the threshold changes, different foreground priors generate multiple different partitions that are assigned a likelihood of being foreground. Last, all segments are combined into a saliency map based on the idea of similarity voting. Experiments on five benchmark databases demonstrate the proposed method performs well when it compares with the state-of-the-art methods in terms of accuracy and robustness.

Adaptive Extraction Method for Phase Foreground Region in Laser Interferometry of Gear

  • Xian Wang;Yichao Zhao;Chaoyang Ju;Chaoyong Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Tooth surface shape error is an important parameter in gear accuracy evaluation. When tooth surface shape error is measured by laser interferometry, the gear interferogram is highly distorted and the gray level distribution is not uniform. Therefore, it is important for gear interferometry to extract the foreground region from the gear interference fringe image directly and accurately. This paper presents an approach for foreground extraction in gear interference images by leveraging the sinusoidal variation characteristics shown by the interference fringes. A gray level mask with an adaptive threshold is established to capture the relevant features, while a local variance evaluation function is employed to analyze the fluctuation state of the interference image and derive a repair mask. By combining these masks, the foreground region is directly extracted. Comparative evaluations using qualitative and quantitative assessment methods are performed to compare the proposed algorithm with both reference results and traditional approaches. The experimental findings reveal a remarkable degree of matching between the algorithm and the reference results. As a result, this method shows great potential for widespread application in the foreground extraction of gear interference images.