• Title/Summary/Keyword: Forecasting Volatility

Search Result 91, Processing Time 0.025 seconds

최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계 (Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs)

  • 김현기;최우용;오성권
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.533-538
    • /
    • 2013
  • 최근 빈번히 일어나는 국지성 집중호우로 인해 피해가 급격히 증가하고 있다. 인구가 밀집한 수도권과 같은 경우 산사태와 토석류 및 홍수로 인해 인명 및 재산피해가 심각하다. 따라서 집중호우에 대한 예측의 중요성이 증가하고 있다. 우리나라 악천후 강수의 특징으로는 태풍과 집중호우로 구분된다. 이는 지속시간과 지역에 따라 차이를 보인다. 또한, 지역적인 강수는 계절에 따라 변동성이 크고 비선형적이기 때문에 강수를 예측하는데 어려움이 따른다. 본 논문에서는 기상청에서 현업으로 사용하는 초단기 기상 분석 및 예측시스템 (Korea Local Analysis and Prediction System; KLAPS)의 기상 관측 자료를 이용하여 초단기 호우 예측 패턴 모델을 구현한다. 그리고 악천후 시 피해가 큰 수도권을 중심으로 여름철 호우 특보를 예측한다. 유전자 알고리즘(Genetic Algorithm; GA) 기반 다항식 방사형 기저함수 신경회로망(Radial Basis Function Neural Networks; RBFNNs)을 이용하여 초단기 강수 예측 패턴 모델을 설계한다. 최적화된 분류기를 설계하기 위하여 유전자 알고리즘을 이용하여 주요 파라미터인 입력변수의 수, 다항식 차수, 퍼지화 계수, FCM(Fuzzy C-mean) 클러스터 수를 동조한다.

경제지표를 활용한 분산프리미엄의 결정요인 추정과 수익률 예측 (Determinants of Variance Risk Premium)

  • 윤선중
    • 경제분석
    • /
    • 제25권1호
    • /
    • pp.1-33
    • /
    • 2019
  • 본 연구는 어떠한 경제요인이 분산프리미엄의 동역학과 관련되어 있는지 확인하고, 분산 프리미엄의 예측력과 관계된 경제지표를 검증하였다. 국내외 선행연구 등에서 주가/경기를 예측하는 정보력을 보유한다고 알려진, 11개의 일반경기변수, 8개의 금리연관변수, 3개의 금융시장변수, 11개의 투자자 심리 및 활동변수를 이용하여 단변량/다변량 회귀분석을 통해 분산프리미엄과 유의한 관련을 가지는 변수를 추출하였다. 그 결과 분산프리미엄의 변동성을 설명하는 변수는 원달러환율, 외환보유액, 역사적/내재 변동성, 그리고 금리변수들로 한정되었으며, 이 변수들의 분산프리미엄에 대한 수정결정계수는 65% 이상으로 높은 설명력을 보여주었다. 다음으로 분산프리미엄에 유의한 설명력을 가진 변수들을 이용해 1~6개월의 미래 주식수익률 및 변동성 변화를 예측함으로써 어떠한 변수의 정보력이 분산 프리미엄의 예측력과 관련되어 있는지 검증하였다. 예측분석을 수행한 결과, 분산프리미엄의 동역학과 관련된 변수들 중, 원달러환율만이 수익률/변동성에 대한 공통적으로 유의한 예측력을 보유하고 있었다. 이러한 결과는 분산프리미엄이 글로벌 위험요인과 관련되어 있다는 선행연구의 결과와 일관되며(Londono, 2012; Bollerslev et al., 2014), 분산프리미엄의 예측력이 대외변수에 대한 경제의 민감도와 관련이 있다고 해석할 수 있다.

통행시간 패턴인식형 버스도착시간 예측 알고리즘 개발 연구 (A Study on Development of Bus Arrival Time Prediction Algorithm by using Travel Time Pattern Recognition)

  • 장현호;윤병조;이진수
    • 대한토목학회논문집
    • /
    • 제39권6호
    • /
    • pp.833-839
    • /
    • 2019
  • BIS (Bus Information System:버스정보시스템, 이하 BIS)는 시내버스 운행과 관련된 각종 정보를 수집하고 예측알고리즘을 통해 이용객에게 정보를 제공하고 있다. 동일 구간의 최근 정보를 통한 예측방법은 해당 구간의 소통상황을 반영하지만 예측 대상노선의 특성을 반영할 수 없다는 한계가 있다. 해당노선의 동시간대 과거이력자료를 통해 예측하는 방법은 소통상황의 변동성이 큰 첨두시 예측에 한계가 있는 실정이다. 따라서 예측대상 시점의 통행패턴을 인식하고 가장 유사한 과거 시점의 통행패턴을 선택할 수 있는 패턴인식형 버스도착시간 예측 알고리즘을 개발하였다. 본연구의 예측 결과를 서울시 BIS 도착예측정보이력과 비교 검증한 결과 각 정류장 간 통행시간의 평균제곱근오차가 비첨두시 약 35초(기존: 40초), 첨두시 약 40초(기존: 60초)로 기존대비 약 10~20 %의 개선을 보였다. 이는 동일 과거 시간대 외의 시간대에 현재 교통상황을 대표할 수 있는 자료가 존재함을 의미한다.

금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례 (A Case of Establishing Robo-advisor Strategy through Parameter Optimization)

  • 강민철;임규건
    • 한국IT서비스학회지
    • /
    • 제19권2호
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

수입자동차 리콜 수요패턴 분석과 ARIMA 수요 예측모형의 적용 (Analysis of the Recall Demand Pattern of Imported Cars and Application of ARIMA Demand Forecasting Model)

  • 정상천;박소현;김승철
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.93-106
    • /
    • 2020
  • This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.

경제적, 산업구조적, 문화적 요인을 기반으로 한 주요 국가의 한국 품목별 수입액 예측 모형 개발: 한국의, 한국에 대한 문화적 요인을 중심으로 (Development of the forecasting model for import volume by item of major countries based on economic, industrial structural and cultural factors: Focusing on the cultural factors of Korea)

  • 전승표;서봉군;박도형
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.23-48
    • /
    • 2021
  • 한국경제는 지난 수십년간 정부의 수출전략정책에 힘입어 지속적으로 경제 성장을 이룩해왔으며, 수출의 증가는 경제의 효율성 향상, 고용창출, 기술개발 촉진 등 우리나라의 경제 성장을 견인하는 주도적인 역할을 해왔다. 전통적으로 우리나라 수출에 영향을 미치는 주요 요인은 크게 경제적 요인과 산업구조적 요인이라는 두가지 관점에서 찾아볼 수 있다. 첫번째, 경제적 요인은 환율과 글로벌 경기 변동과 관련된 것으로서, 환율이 우리나라 수출에 미치는 영향은 환율 수준 및 환율 변동성에 따른 영향으로 나누어 살펴볼 수 있으며, 글로벌 경기 변동은 세계 수입 수요에 영향을 미쳐 우리나라 수출을 좌우하는 절대적 요인으로 볼 수 있다. 두 번째, 산업구조적 요인은 국제 분업화의 둔화, 중국의 특정 수입품 자국내 대체 증가, 수출 주력 산업의 해외생산 형태 변화 등 산업이나 제품에 따라 발생한 고유한 특징이다. 가장 최근 글로벌 교류와 관련된 연구들을 살펴보면, 경제적 요인 및 산업구조적 요인과 더불어 문화적인 측면이 중요함을 여러 문헌에서 피력하고 있다. 이에 따라 본 연구에서는 각국의 한국 수입액 예측 모형에 문화적 요인을 함께 반영하여 예측 모형을 개발하고자 하였으며, 구체적으로 문화적 요인이 수입액에 미치는 영향을 PUSH-PULL 프레임워크 관점에서 반영해보고자 하였다. PUSH 관점은 한국이 자신의 브랜드를 개발하고 적극 홍보하는 관점으로 K-POP, K-FOOD, K-CULTURE 등으로 대표되는 한국의 브랜드에 대한 각국의 관심 정도로 정의할 수 있다. 또한, PULL 관점은 각 국가의 국민들의 문화적, 심리적 특징으로 해당 국가의 지배체계, 남성성, 위험 회피성, 시간에 대한 단기/장기 지향성 등으로 대표되는 각 국의 문화 코드로서 한류문화를 얼마나 수용할 성향을 띄고 있는지로 정의할 수 있다. 본 연구에서 제시한 최종 예측 모델의 고유한 특징은 Design Principle에 기반하여 설계한 것인데, 1) 신규로 추가한 데이터 소스를 통해 한국에 대한 관심 및 문화적 특성이 반영될 수 있는 모형으로 구축하였고, 2) 경제적 요인 등의 변화와 품목 및 국가 Code를 입력하면 예측값을 바로 불러올 수 있도록 실용적으로 편의성 있게 설계하였으며, 3) 이론적으로도 의미 있는 결과를 도출하기 위해서 입력과 목표 변수간의 관계를 해석 가능한 알고리즘을 중심으로 설계하였다는 점이다. 본 연구는 기술적 측면, 경제적 측면, 정책적 측면에서 의미 있는 시사점을 제시할 수 있으며, 수입액 예측 모형을 활용하여 중소·중견기업의 수출 지원 전략에 의미 있는 기여를 할 수 있을 것으로 기대된다.

M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발 (Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms)

  • 양훈석;김선웅;최흥식
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.63-83
    • /
    • 2019
  • 투자자들은 기업의 내재가치 분석, 기술적 보조지표 분석 등 복잡한 분석보다 차트(chart)에 나타난 그래프(graph)의 모양으로 매매 시점을 찾는 직관적인 방법을 더 선호하는 편이다. 하지만 패턴(pattern) 분석 기법은 IT 구현의 난이도 때문에 사용자들의 요구에 비해 전산화가 덜 된 분야로 여겨진다. 최근에는 인공지능(artificial intelligence, AI) 분야에서 신경망을 비롯한 다양한 기계학습(machine learning) 기법을 사용하여 주가의 패턴을 연구하는 사례가 많아졌다. 특히 IT 기술의 발전으로 방대한 차트 데이터를 분석하여 주가 예측력이 높은 패턴을 발굴하는 것이 예전보다 쉬워졌다. 지금까지의 성과로 볼 때 가격의 단기 예측력은 높아졌지만, 장기 예측력은 한계가 있어서 장기 투자보다 단타 매매에서 활용되는 수준이다. 이외에 과거 기술력으로 인식하지 못했던 패턴을 기계적으로 정확하게 찾아내는 데 초점을 맞춘 연구도 있지만 찾아진 패턴이 매매에 적합한지 아닌지는 별개의 문제이기 때문에 실용적인 부분에서 취약할 수 있다. 본 연구는 주가 예측력이 있는 패턴을 찾으려는 기존 연구 방법과 달리 패턴들을 먼저 정의해 놓고 확률기반으로 선택해서 매매하는 방법을 제안한다. 5개의 전환점으로 정의한 Merrill(1980)의 M&W 파동 패턴은 32가지의 패턴으로 시장 국면 대부분을 설명할 수 있다. 전환점만으로 패턴을 분류하기 때문에 패턴 인식의 정확도를 높이기 위해 드는 비용을 줄일 수 있다. 32개 패턴으로 만들 수 있는 조합의 수는 전수 테스트가 불가능한 수준이다. 그래서 최적화 문제와 관련한 연구들에서 가장 많이 사용되고 있는 인공지능 알고리즘(algorithm) 중 하나인 유전자 알고리즘(genetic algorithm, GA)을 이용하였다. 그리고 미래의 주가가 과거를 반영한다 해도 같게 움직이지 않기 때문에 전진 분석(walk-forward analysis, WFA)방법을 적용하여 과최적화(overfitting)의 실수를 줄이도록 하였다. 20종목씩 6개의 포트폴리오(portfolio)를 구성하여 테스트해 본 결과에 따르면 패턴 매매에서 가격 변동성이 어느 정도 수반되어야 하며 패턴이 진행 중일 때보다 패턴이 완성된 후에 진입, 청산하는 것이 효과적임을 확인하였다.

다층모형을 활용한 양파 구중 추정 연구 (A study on the estimation of onion's bulb weight using multi-level model)

  • 김준기;최성천;김재휘;서홍석
    • 응용통계연구
    • /
    • 제33권6호
    • /
    • pp.763-776
    • /
    • 2020
  • 양파는 기상여건에 따른 작황의 변동성이 커 생산량 및 가격 변화가 크다. 정부는 양파를 수급 민감 품목으로 지정하여 다양한 수급 안정대책을 마련하고 시행하는데 이를 위해서는 선제적이고 신뢰도 높은 양파 생산량 예측 정보가 필수적이다. 본 연구에서는 양파의 5월 초 지상부 생육정보와 5월 초부터 수확기까지의 기상정보를 이용하여 최종 생구 무게에 미치는 영향을 추정함으로써 생산량 예측의 정확도 개선에 기여하고자 한다. 위계적 특성을 갖고 있는 자료를 통해 개체별 생육요인인 1-수준 자료와 필지별 기상요인인 2-수준 자료, 그리고 두 수준 간 상호작용을 고려한 다층모형을 도입하여 분석하였다. 분석 결과, 5월 초에 엽수, 엽초경, 초장의 생육이 좋을수록 최종 생구 무게는 증가하는 것으로 추정되었다. 5월 초부터 수확기까지의 기상요인에서는 강수량, 고온일수, 탄소동화저해일수가 생구 무게에 음의 효과가 나타났으며, 일교차와 수확전강수량은 양의 효과로 통계적으로 유의하였다. 또한 1-수준과 2-수준의 교호작용항을 고려하여 모형의 적합도와 설명력을 향상시켰다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.

방향성매매를 위한 지능형 매매시스템의 투자성과분석 (Analysis of Trading Performance on Intelligent Trading System for Directional Trading)

  • 최흥식;김선웅;박성철
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.187-201
    • /
    • 2011
  • 방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.