• Title/Summary/Keyword: Forecasting Volatility

Search Result 91, Processing Time 0.026 seconds

A Comparative Study on the Forecasting Performance of Range Volatility Estimators using KOSPI 200 Tick Data

  • Kim, Eun-Young;Park, Jong-Hae
    • The Korean Journal of Financial Management
    • /
    • v.26 no.2
    • /
    • pp.181-201
    • /
    • 2009
  • This study is on the forecasting performance analysis of range volatility estimators(Parkinson, Garman and Klass, and Rogers and Satchell) relative to historical one using two-scale realized volatility estimator as a benchmark. American sub-prime mortgage loan shock to Korean stock markets happened in sample period(January 2, 2006~March 10, 2008), so the structural change somewhere within this period can make a huge influence on the results. Therefore sample was divided into two sub-samples by May 30, 2007 according to Zivot and Andrews unit root test results. As expected, the second sub-sample was much more volatile than the first sub-sample. As a result of forecasting performance analysis, Rogers and Satchell volatility estimator showed the best forecasting performance in the full sample and relatively better forecasting performance than other estimators in sub-samples. Range volatility estimators showed better forecasting performance than historical volatility estimator during the period before the outbreak of structural change(the first sub-sample). On the contrary, the forecasting performance of range volatility estimators couldn't beat that of historical volatility estimator during the period after this event(the second sub-sample). The main culprit of this result seems to be the increment of range volatility caused by that of intraday volatility after structural change.

  • PDF

Supremacy of Realized Variance MIDAS Regression in Volatility Forecasting of Mutual Funds: Empirical Evidence From Malaysia

  • WAN, Cheong Kin;CHOO, Wei Chong;HO, Jen Sim;ZHANG, Yuruixian
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.1-15
    • /
    • 2022
  • Combining the strength of both Mixed Data Sampling (MIDAS) Regression and realized variance measures, this paper seeks to investigate two objectives: (1) evaluate the post-sample performance of the proposed weekly Realized Variance-MIDAS (RVar-MIDAS) in one-week ahead volatility forecasting against the established Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and the less explored but robust STES (Smooth Transition Exponential Smoothing) methods. (2) comparing forecast error performance between realized variance and squared residuals measures as a proxy for actual volatility. Data of seven private equity mutual fund indices (generated from 57 individual funds) from two different time periods (with and without financial crisis) are applied to 21 models. Robustness of the post-sample volatility forecasting of all models is validated by the Model Confidence Set (MCS) Procedures and revealed: (1) The weekly RVar-MIDAS model emerged as the best model, outperformed the robust DAILY-STES methods, and the weekly DAILY-GARCH models, particularly during a volatile period. (2) models with realized variance measured in estimation and as a proxy for actual volatility outperformed those using squared residual. This study contributes an empirical approach to one-week ahead volatility forecasting of mutual funds return, which is less explored in past literature on financial volatility forecasting compared to stocks volatility.

Forecasting KOSPI 200 Volatility by Volatility Measurements (변동성 측정방법에 따른 KOSPI200 지수의 변동성 예측 비교)

  • Choi, Young-Soo;Lee, Hyun-Jung
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.293-308
    • /
    • 2010
  • In this paper, we examine the forecasting KOSPI 200 realized volatility by volatility measurements. The empirical investigation for KOSPI 200 daily returns is done during the period from 3 January 2003 to 29 June 2007. Since Korea Exchange(KRX) will launch VKOSPI futures contract in 2010, forecasting VKOSPI can be an important issue. So we analyze which volatility measurements forecast VKOSPI better. To test this hypothesis, we use 5-minute interval returns to measure realized volatilities. Also, we propose a new methodology that reflects the synchronized bidding and simultaneously takes it account the difference between overnight volatility and intra-daily volatility. The t-test and F-test show that our new realized volatility is not only different from the realized volatility by a conventional method at less than 0.01% significance level, also more stable in summary statistics. We use the correlation analysis, regression analysis, cross validation test to investigate the forecast performance. The empirical result shows that the realized volatility we propose is better than other volatilities, including historical volatility, implied volatility, and convention realized volatility, for forecasting VKOSPI. Also, the regression analysis on the predictive abilities for realized volatility, which is measured by our new methodology and conventional one, shows that VKOSPI is an efficient estimator compared to historical volatility and CRR implied volatility.

Forecasting volatility index by temporal convolutional neural network (Causal temporal convolutional neural network를 이용한 변동성 지수 예측)

  • Ji Won Shin;Dong Wan Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.129-139
    • /
    • 2023
  • Forecasting volatility is essential to avoiding the risk caused by the uncertainties of an financial asset. Complicated financial volatility features such as ambiguity between non-stationarity and stationarity, asymmetry, long-memory, sudden fairly large values like outliers bring great challenges to volatility forecasts. In order to address such complicated features implicity, we consider machine leaning models such as LSTM (1997) and GRU (2014), which are known to be suitable for existing time series forecasting. However, there are the problems of vanishing gradients, of enormous amount of computation, and of a huge memory. To solve these problems, a causal temporal convolutional network (TCN) model, an advanced form of 1D CNN, is also applied. It is confirmed that the overall forecasting power of TCN model is higher than that of the RNN models in forecasting VIX, VXD, and VXN, the daily volatility indices of S&P 500, DJIA, Nasdaq, respectively.

Forecasting Long-Memory Volatility of the Australian Futures Market (호주 선물시장의 장기기억 변동성 예측)

  • Kang, Sang Hoon;Yoon, Seong-Min
    • International Area Studies Review
    • /
    • v.14 no.2
    • /
    • pp.25-40
    • /
    • 2010
  • Accurate forecasting of volatility is of considerable interest in financial volatility research, particularly in regard to portfolio allocation, option pricing and risk management because volatility is equal to market risk. So, we attempted to delineate a model with good ability to forecast and identified stylized features of volatility, with a focus on volatility persistence or long memory in the Australian futures market. In this context, we assessed the long-memory property in the volatility of index futures contracts using three conditional volatility models, namely the GARCH, IGARCH and FIGARCH models. We found that the FIGARCH model better captures the long-memory property than do the GARCH and IGARCH models. Additionally, we found that the FIGARCH model provides superior performance in one-day-ahead volatility forecasts. As discussed in this paper, the FIGARCH model should prove a useful technique in forecasting the long-memory volatility in the Australian index futures market.

Forecasting Power of Range Volatility According to Different Estimating Period (한국주식시장에서 범위변동성의 기간별 예측력에 관한 연구)

  • Park, Jong-Hae
    • Management & Information Systems Review
    • /
    • v.30 no.2
    • /
    • pp.237-255
    • /
    • 2011
  • This empirical study is focused on practical application of Range-Based Volatility which is estimated by opening, high, low, closing price of overall asset. Especially proper forecasting period is what I want to know. There is four useful Range-Based Volatility(RV) such as Parkinson(1980; PK), Garman and Klass(1980; GK) Rogers and Satchell(1991; RS), Yang and Zhang(2008; YZ). So, four RV of KOPSI 200 index during 2000.5.22-2009.9.18 was used for empirical test. The emprirical result as follows. First, the best RV which shows the best forecasting performance is PK volatility among PK, GK, RS, YZ volatility. According to estimating period forcasting performance of RV shows delicate difference. PK has better performance in the period with financial crisis of sub-prime mortgage loan. if not, RS is better. Second, almost result shows better performance on forecasting volatility without sub-prime mortgage loan period. so we can say that forecasting performance is lower when historical volatiltiy is comparatively high. Finally, I find that longer estimating period in AR(1) and MA(1) model can reduce forecasting error. More interesting point is that the result shows rapid decrease form 60 days to 90 days and there is no more after 90 days. So, if we forecast the volatility using Range-Based volaility it is better to estimate with 90 trading period or over 90 days.

  • PDF

Deep learning forecasting for financial realized volatilities with aid of implied volatilities and internet search volumes (금융 실현변동성을 위한 내재변동성과 인터넷 검색량을 활용한 딥러닝)

  • Shin, Jiwon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.93-104
    • /
    • 2022
  • In forecasting realized volatility of the major US stock price indexes (S&P 500, Russell 2000, DJIA, Nasdaq 100), internet search volume reflecting investor's interests and implied volatility are used to improve forecast via a deep learning method of the LSTM. The LSTM method combined with search volume index produces better forecasts than existing standard methods of the vector autoregressive (VAR) and the vector error correction (VEC) models. It also beats the recently proposed vector error correction heterogeneous autoregressive (VECHAR) model which takes advantage of the cointegration relation between realized volatility and implied volatility.

System Dynamics Approach for the Forecasting KOSPI (시스템다이내믹스를 활용한 종합 주가지수 예측 모델 연구)

  • Cho, Kang-Rae;Jeong, Kwan-Yong
    • Korean System Dynamics Review
    • /
    • v.8 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • Stock market volatility largely depends on firms' value and growth opportunities. However, with the globalization of world economy, the effect of the synchronization in major countries is gaining its importance. Also, domestically, the business cycle and cash market of the country are additional factors needed to be considered. The main purpose of this research is to attest the application and usefulness of System Dynamics as a general stock market forecasting tool. Throughout this research, System Dynamics suggests a conceptual model for forecasting a KOSPI(Korea Composite Stock Price Index), taking the factors of the composite stock price indexes in traditional researches. In conclusion of this research, System Dynamics was proved to bean appropriate model for forecasting the volatility and direction of a stock market as a whole. With its timely adaptability, System Dynamic overcomes the limit of traditional statistic models.

  • PDF

Further Advances in Forecasting Day-Ahead Electricity Prices Using Time Series Models

  • Guirguis, Hany S.;Felder, Frank A.
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.159-166
    • /
    • 2004
  • Forecasting prices in electricity markets is critical for consumers and producers in planning their operations and managing their price risk. We utilize the generalized autoregressive conditionally heteroskedastic (GARCH) method to forecast the electricity prices in two regions of New York: New York City and Central New York State. We contrast the one-day forecasts of the GARCH against techniques such as dynamic regression, transfer function models, and exponential smoothing. We also examine the effect on our forecasting of omitting some of the extreme values in the electricity prices. We show that accounting for the extreme values and the heteroskedactic variance in the electricity price time-series can significantly improve the accuracy of the forecasting. Additionally, we document the higher volatility in New York City electricity prices. Differences in volatility between regions are important in the pricing of electricity options and for analyzing market performance.

Exchange Rate Volatility Measures and GARCH Model Applications : Practical Information Processing Approach (환율 변동성 측정과 GARCH모형의 적용 : 실용정보처리접근법)

  • Moon, Chang-Kuen
    • International Commerce and Information Review
    • /
    • v.12 no.1
    • /
    • pp.99-121
    • /
    • 2010
  • This paper reviews the categories and properties of risk measures, analyzes the classes and structural equations of volatility forecasting models, and presents the practical methodologies and their expansion methods of estimating and forecasting the volatilities of exchange rates using Excel spreadsheet modeling. We apply the GARCH(1,1) model to the Korean won(KRW) denominated daily and monthly exchange rates of USD, JPY, EUR, GBP, CAD and CNY during the periods from January 4, 1998 to December 31, 2009, make the estimates of long-run variances in the returns of exchange rate calculated as the step-by-step change rate, and test the adequacy of estimated GARCH(1,1) model using the Box-Pierce-Ljung statistics Q and chi-square test-statistics. We demonstrate the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the monthly series except the semi-variance GARCH(1,1) applied to KRW/JPY100 rate. But we reject the adequacy of GARCH(1,1) model in estimating and forecasting the volatility of exchange rates in the daily series because of the very high Box-Pierce-Ljung statistics in the respective time lags resulting to the self-autocorrelation. In conclusion, the GARCH(1,1) model provides for the easy and helpful tools to forecast the exchange rate volatilities and may become the powerful methodology to overcome the application difficulties with the spreadsheet modeling.

  • PDF