• 제목/요약/키워드: Forecasting Accuracy

검색결과 671건 처리시간 0.027초

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

부하변동율을 이용한 선거일의 24시간 수요예측 (The 24 Hourly Load Forecasting of the Election Day Using the Load Variation Rate)

  • 송경빈
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1041-1045
    • /
    • 2010
  • Short-term electric load forecasting of power systems is essential for the power system stability and the efficient power system operation. An accurate load forecasting scheme improves the power system security and saves some economic losses in power system operations. Due to scarcity of the historical same type of holiday load data, most big electric load forecasting errors occur on load forecasting for the holidays. The fuzzy linear regression model has showed good accuracy for the load forecasting of the holidays. However, it is not good enough to forecast the load of the election day. The concept of the load variation rate for the load forecasting of the election day is introduced. The proposed algorithm shows its good accuracy in that the average percentage error for the short-term 24 hourly loads forecasting of the election days is 2.27%. The accuracy of the proposed 24 hourly loads forecasting of the election days is compared with the fuzzy linear regression method. The proposed method gives much better forecasting accuracy with overall average error of 2.27%, which improved about average error of 2% as compared to the fuzzy linear regression method.

FINANCIAL TIME SERIES FORECASTING USING FUZZY REARRANGED INTERVALS

  • Jung, Hye-Young;Yoon, Jin-Hee;Choi, Seung-Hoe
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제19권1호
    • /
    • pp.7-21
    • /
    • 2012
  • The fuzzy time series is introduced by Song and Chissom([8]) to construct a pattern for time series with vague or linguistic value. Many methods using the interval and fuzzy logical relationship related with historical data have been suggested to enhance the forecasting accuracy. But they do not fully reflect the fluctuation of historical data. Therefore, we propose the interval rearranged method to reflect the fluctuation of historical data and to improve the forecasting accuracy of fuzzy time series. Using the well-known enrollment, the proposed method is discussed and the forecasting accuracy is evaluated. Empirical studies show that the proposed method in forecasting accuracy is superior to existing methods and it fully reflects the fluctuation of historical data.

Suggesting Forecasting Methods for Dietitians at University Foodservice Operations

  • Ryu Ki-Sang
    • Nutritional Sciences
    • /
    • 제9권3호
    • /
    • pp.201-211
    • /
    • 2006
  • The purpose of this study was to provide dietitians with the guidance in forecasting meal counts for a university/college foodservice facility. The forecasting methods to be analyzed were the following: naive model 1, 2, and 3; moving average, double moving average, simple exponential smoothing, double exponential smoothing, Holt's, and Winters' methods, and simple linear regression. The accuracy of the forecasting methods was measured using mean squared error and Theil's U-statistic. This study showed how to project meal counts using 10 forecasting methods for dietitians. The results of this study showed that WES was the most accurate forecasting method, followed by $na\ddot{i}ve$ 2 and naive 3 models. However, naive model 2 and 3 were recommended for using by dietitians in university/college dining facilities because of the accuracy and ease of use. In addition, the 2000 spring semester data were better than the 2000 fall semester data to forecast 2001spring semester data.

특수일의 최대 전력수요예측 알고리즘 개선 (An Improved Algorithm of the Daily Peak Load Forecasting fair the Holidays)

  • 송경빈;구본석;백영식
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권3호
    • /
    • pp.109-117
    • /
    • 2002
  • High accuracy of the load forecasting for power systems improves the security of the power system and generation cost. However, the forecasting problem is difficult to handle due to the nonlinear and the random-like behavior of system loads as well as weather conditions and variation of economical environments. So far. many studies on the problem have been made to improve the prediction accuracy using deterministic, stochastic, knowledge based and artificial neural net(ANN) method. In the conventional load forecasting method, the load forecasting maximum error occurred for the holidays on Saturday and Monday. In order to reduce the load forecasting error of the daily peak load for the holidays on Saturday and Monday, fuzzy concept and linear regression theory have been adopted into the load forecasting problem. The proposed algorithm shows its good accuracy that the average percentage errors are 2.11% in 1996 and 2.84% in 1997.

계량경제모형간 국내 총화물물동량 예측정확도 비교 연구 (A Comparative Study on the Forecasting Accuracy of Econometric Models :Domestic Total Freight Volume in South Korea)

  • 정성환;강경우
    • 대한교통학회지
    • /
    • 제33권1호
    • /
    • pp.61-69
    • /
    • 2015
  • 이 연구에서는 국내 총 화물물동량에 대한 5개 계량경제모형들의 예측정확도를 비교한다. 적용된 5개 모형은 통상최소자승모형, 부분조정모형, 축소된 자기회귀분포시차모형, 벡터자기회귀 모형, 시간변동계수모형이다. 모형의 추정과 예측은 1970-2011년 동안의 연간 국내 화물물동량 자료와 광공업생산지수를 이용하여 수행되었다. 5개 모형은 반복적인 예측방법을 이용하여 1년 후, 3년 후, 5년 후 예측성능이 비교되었다. 추가적으로 장래변동성의 크기에 따라 두 예측기간으로 나누어 예측정확도를 비교하였고, 결과적으로 시간변동계수모형은 변동을 갖는 예측기간에 대해서 가장 높은 정확도를, 반면에 벡터자기회귀 모형은 점진적인 변화를 갖는 예측기간에 대해서 다른 모형에 비해 우수한 성능을 보여주는 것으로 분석되었다.

다중회귀모형을 이용한 104주 주 최대 전력수요예측 (Weekly Maximum Electric Load Forecasting Method for 104 Weeks Using Multiple Regression Models)

  • 정현우;김시연;송경빈
    • 전기학회논문지
    • /
    • 제63권9호
    • /
    • pp.1186-1191
    • /
    • 2014
  • Weekly and monthly electric load forecasting are essential for the generator maintenance plan and the systematic operation of the electric power reserve. This paper proposes the weekly maximum electric load forecasting model for 104 weeks with the multiple regression model. Input variables of the multiple regression model are temperatures and GDP that are highly correlated with electric loads. The weekly variable is added as input variable to improve the accuracy of electric load forecasting. Test results show that the proposed algorithm improves the accuracy of electric load forecasting over the seasonal autoregressive integrated moving average model. We expect that the proposed algorithm can contribute to the systematic operation of the power system by improving the accuracy of the electric load forecasting.

기온변화에 의한 수요변동을 고려한 단기 전력수요예측 전문가시스템의 연구 (A study on the short-term load forecasting expert system considering the load variations due to the change in temperature)

  • 김광호;이철희
    • 산업기술연구
    • /
    • 제15권
    • /
    • pp.187-193
    • /
    • 1995
  • In this paper, a short-term load forecasting expert system considering the load variation due to the change in temperature is presented. The change in temperature is an important load variation factor that varies the normal load pattern. The conventional load forecasting methods by artificial neural networks have used the technique where the temperature variables were included in the input neurons of artificial neural networks. However, simply adding the input units of temperature data may make the forecasting accuracy worse, since the accuracy of the load forecasting in this method depends on the accuracy of weather forecasting. In this paper, the fuzzy expert system that modifies the forecasted load using fuzzy rules representing the relations of load and temperature is presented and compared with a conventional load forecasting technique. In the test case of 1991, the proposed model provided a more accurate forecast than the conventional technique.

  • PDF

단기 전력수요예측 정확도 개선을 위한 대표기온 산정방안 (Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy)

  • 임종훈;김시연;박정도;송경빈
    • 조명전기설비학회논문지
    • /
    • 제27권6호
    • /
    • pp.39-43
    • /
    • 2013
  • The current representative temperature selection method with five cities cannot reflect the sufficient regional climate characteristics. In this paper, the new representative temperature selection method is proposed with the consideration of eight representative cities. The proposed method considered the recent trend of power sales, the climate characteristics and population distribution to improve the accuracy of short-term load forecasting. Case study results for the accuracy of short-term load forecasting are compared for the traditional temperature weights of five cities and the proposed temperature weights of eight cities. The simulation results show that the proposed method provides more accurate results than the traditional method.

인위적인 수요창출 하에서 서비스부품의 수요예측의 정확도 (A Study of Measuring Forecasting Accuracy Under Rromotion System)

  • 이영
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.10-21
    • /
    • 2010
  • Promotion system can be used as strategical management weapon to enhance the sales power. Planned order system has some similarities with promotion system to create purchasing power and to supply the service parts with low price on purpose. The only difference is whether it is prearranged event or not. The effectiveness of forecasting has increased with normal state of ordering process. However, the accuracy of forecasting has diminished with irregular state of ordering, such as demand occurrences by unexpected climate change or intended planned order by the company. A planned order system is examined through the process of computing the effectiveness on the basis of forecasting in this paper. And it is suggested that how to increase the accuracy of forecasting capability under the planned order system.