• 제목/요약/키워드: Forecast accuracy

검색결과 490건 처리시간 0.026초

데이터마이닝을 활용한 해군함정 수리부속 수요예측 (Naval Vessel Spare Parts Demand Forecasting Using Data Mining)

  • 윤현민;김수환
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.253-259
    • /
    • 2017
  • Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques. First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity, ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique. Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.

베이지안 칼만 필터 기법의 훈련 기간에 따른 풍력 자원 예측 정확도 향상성 연구 (A Study of Improvement of a Prediction Accuracy about Wind Resources based on Training Period of Bayesian Kalman Filter Technique)

  • 이순환
    • 한국지구과학회지
    • /
    • 제38권1호
    • /
    • pp.11-23
    • /
    • 2017
  • 풍력 자원의 단기 예측 가능성은 풍력 발전 단지의 경제적 타당성을 평가하는 중요한 요소이다. 본 연구에서는 풍력 자원의 단기 예측 가능성을 향상시키는 방법의 하나로 베이지안 칼만 필터를 후처리 과정으로 적용하였다. 이때 추정된 모델과 관측 데이터의 상관관계를 평가하기 위하여 일정 시간 동안 베이지안 칼만 훈련 기간이 요구된다. 본 연구는 여러 훈련 기간에 따라 예측 특성을 정량적으로 분석하였다. 태백 지역에서는 3일 단기 베이지안 칼만 훈련으로 기온과 풍속을 예측하는 것이 다른 훈련 기간을 적용할 때보다 우수한 예측 성능을 보였다. 반면 이어도는 6일 이상의 베이지안 칼만 필터의 훈련 기간을 적용한 경우 가장 좋은 예측 성능을 나타낸다. WRF 예측 성능이 떨어지는 사례에서 베이지안 칼만 필터의 예측 성능향상이 뚜렷하게 나타나며, 반대로 WRF 예측이 정확한 지점에서는 필터적용에 따른 성능향상 정도가 약한 경향을 가진다.

A Finite Element Galerkin High Order Filter for the Spherical Limited Area Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kang, Hyun-Gyu
    • 한국지구과학회지
    • /
    • 제38권2호
    • /
    • pp.105-114
    • /
    • 2017
  • Two dimensional finite element method with quadrilateral basis functions was applied to the spherical high order filter on the spherical surface limited area domain. The basis function consists of four shape functions which are defined on separate four grid boxes sharing the same gridpoint. With the basis functions, the first order derivative was expressed as an algebraic equation associated with nine point stencil. As the theory depicts, the convergence rate of the error for the spherical Laplacian operator was found to be fourth order, while it was the second order for the spherical Laplacian operator. The accuracy of the new high order filter was shown to be almost the same as those of Fourier finite element high order filter. The two-dimension finite element high order filter was incorporated in the weather research and forecasting (WRF) model as a hyper viscosity. The effect of the high order filter was compared with the built-in viscosity scheme of the WRF model. It was revealed that the high order filter performed better than the built in viscosity scheme did in providing a sharper cutoff of small scale disturbances without affecting the large scale field. Simulation of the tropical cyclone track and intensity with the high order filter showed a forecast performance comparable to the built in viscosity scheme. However, the predicted amount and spatial distribution of the rainfall for the simulation with the high order filter was closer to the observed values than the case of built in viscosity scheme.

딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측 (A deep learning analysis of the KOSPI's directions)

  • 이우식
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.287-295
    • /
    • 2017
  • 2016년 3월 구글 (Google)의 바둑인공지능 알파고 (AlphaGo)가 이세돌 9단과의 바둑대결에서 승리한 이후 다양한 분야에서 인공지능 사용에 대한 관심이 높아지고 있는 가운데 금융투자 분야에서도 인공지능과 투자자문 전문가의 합성어인 로보어드바이저 (Robo-Advisor)에 대한 관심이 높아지고 있다. 인공지능 (artificial intelligence)기반의 의사결정은 비용 절감은 물론 효과적인 의사결정을 가능하게 한다는 점에서 큰 장점이 있다. 본 연구에서는 기술적 분석 (technical analysis) 지표와 딥러닝 (deep learning) 모형을 결합하여 한국 코스피 지수를 예측하는 모형을 개발하고 제시한 모형들의 예측력을 비교, 분석한다. 분석 결과 기술적 분석 지표에 딥러닝 알고리즘을 결합한 모형이 주가지수 방향성 예측 문제에 응용될 수 있음을 확인하였다. 향후 본 연구에서 제안된 기술적 분석 지표와 딥러닝모형을 결합한 기법은 로보어드바이저서비스에 응용할 수 있는 일반화 가능성을 보여준다.

MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

  • Zhai, Junyi;Zhou, Ming;Dong, Shengxiao;Li, Gengyin;Ren, Jianwen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.648-658
    • /
    • 2018
  • Regarding the fact that wind power forecast accuracy is gradually improved as time is approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and the real-time rolling scheme is based on MPC which includes the leading rolling optimization and lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, the closed-loop optimization is formed to correct the power deviation timely, making the unit output smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing prediction precision as well as the power dispatcher's rising expected satisfaction degree with reliable system operation, we set the confidence level of reserve constraints at different timescales as the incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate the effectiveness of the proposed approach.

확률론적 시뮬레이션 분석방법을 적용한 건축개발사업의 재무적 타당성 분석 (A financial feasibility analysis of architectural development projects that use probabilistic simulation analysis method)

  • 이성수;최희복;강경인
    • 한국건설관리학회논문집
    • /
    • 제8권3호
    • /
    • pp.76-86
    • /
    • 2007
  • 건축개발사업은 목적물을 완성시킴으로써 이윤을 창출하는 사업이고, 프로젝트의 성공을 좌우하는 것은 프로젝트 초기에 사업타당성을 정확히 분석하고 예측하는 것에 달려있다. 사업타당성 분실은 본질적으로 현재시점에서 미래예측이라는 불확실성을 내포하고 있으므로 불확실한 상황 하에서 의사결정을 할 수밖에 없다. 이러한 불확실성 하에서의 의사결정방법은 통계학의 확률이론에 기초하고 있지만, 지금까지 사업 타당성 분석은 확률론적 결정방법에 의한 타당성 분석이 아니라 결정론적 방법에 의한 타당성분석을 적용하여 왔다. 따라서 본 연구에서는 초기 사업 타당성 분석 시 프로젝트의 성공을 위해 확률론적 방법에 의한 의사결정을 함으로써, 의사결정 자에게 좀 더 정확하고 신뢰성 있는 자료를 제공할 수 있는 시뮬레이션을 이용한 확률론적 분석방법을 제시한다. 본 연구 결과 확률론적 시뮬레이션 기 법은 건축개발사업의 재무적 타당성 분석 기법으로 적합하다. 중요한 사업 또는 신중한 의사결정시 이 방법을 활용함으로서 정확성과 신뢰성에 근거하여 효율적인 판단이 가능해 질 것이므로 그 활용성이 기대된다.

입찰정보를 이용한 지형지물변화정보 관리시스템 개발 (Development of Management System for Feature Change Information using Bid Information)

  • 허민;이용욱;배경호;유근홍
    • 한국측량학회지
    • /
    • 제27권2호
    • /
    • pp.195-202
    • /
    • 2009
  • 최근 공간정보의 생성 및 활용은 전통적인 측량분야 뿐만 아니라, CNS 및 ITS 등의 민간분야로 점차 확대되고 있다. 따라서, 공간정보의 정확성과 더불어 최신성이 중요한 요소로 자리잡고 있다. 하지만 현재의 수치지도는 일괄갱신 체계로 갱신되므로 최신성을 확보할 수 없으며, 사용자의 요구사항을 충족하기가 어렵다. 따라서 본 연구에서는 효율적인 공간정보 갱신을 위해 나라장터의 입찰정보를 분석하여 지형지물 변화정보를 관리할 수 있는 관리시스템을 개발하였다. 입찰정보로부터 지형지물의 변화 가능성이 있는 공사를 자동적으로 분류하고 이를 DB화하여 지형지물 변화 예측 정보를 생성하였다. 또한 텍스트형태의 입찰정보를 공간정보 데이터와 연계한 위치정보로 변환하였다. 본 시스템이 향후 안정적으로 구현된다면 수치지도 갱신에 필요한 막대한 금액이 일부 절감될 것이며, 공간정보의 최신성 확보에 많은 기여가 예상된다.

교육시설의 개념단계 공사비예측을 위한 인공신경망모델 개발에 관한 연구 (A Study on the Model of Artificial Neural Network for Construction Cost Estimation of Educational Facilities at Conceptual Stage)

  • 손재호;김청융
    • 한국건설관리학회논문집
    • /
    • 제7권4호
    • /
    • pp.91-99
    • /
    • 2006
  • 본 연구는 신축 교육시설 프로젝트의 개념단계에서 공사비를 예측하기 위한 인공신경망모델의 제안을 목적으로 한다. 현행 공공 교육시설의 개념단계 공사비예측에는 기본인자인 연면적에 의한 단일변수 모델이 적용되고 있다. 그러나 개념단계에서 단일변수 공사비예측모델을 적용하여 예측된 공사비는 그 오차범위가 크고, 실시설계 완료 후 물량산출에 의해 산정된 상세공사비와 비교하여 큰 차이를 보일 경우 프로젝트의 수정이 불가피하며, 이는 프로젝트의 비용을 증가시키고 공기를 지연시킨다. 그러므로 본 연구에서는 교육시설 프로젝트의 사업계획 수립 및 예산확보 과정에서 공사비예측에 적용이 가능한다 변수 인공신경망모델을 제안하였다. 개발된 모델을 평가한 결과 평균오차율이 6.82%로써, 평균 93.18%의 정확도를 기록하였다. 제안된 인공신경망모델은 지난 5년간 신축된 교육시설의 공사예정금액을 실적자료로 사용하여 학습되었기 때문에, 차후 교육시설 신축공사의 예산편성에 그 활용이 기대된다.

미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측 (Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter)

  • 성상경;조영상
    • 자원ㆍ환경경제연구
    • /
    • 제28권4호
    • /
    • pp.467-495
    • /
    • 2019
  • 태양광 발전과 같은 신재생에너지의 불확실성은 전력계통의 유연성을 저해하며, 이를 방지하기 위해서는 정확한 발전량의 사전 예측이 중요하다. 본 연구는 미세먼지 농도를 포함한 기상자료를 이용하여 태양광 발전량을 예측하는 것을 목적으로 한다. 본 연구에서는 2016년 1월 1일부터 2018년 9월 30일까지의 발전량, 기상자료, 미세먼지 농도 자료를 이용하고 머신러닝 기반의 RBF 커널 함수를 사용한 서포트 벡터 머신을 적용하여 태양광 발전량을 예측하였다. 예측변수에 미세먼지 농도 반영 유무에 따른 태양광 발전량 예측 모델의 성능을 비교한 결과 미세먼지 농도를 반영한 발전량 예측 모델의 성능이 더 우수한 것으로 나타났다. 미세먼지를 고려한 예측 모형은 미세먼지를 고려하지 않은 예측 모형 대비 6~20시 예측 모형에서는 1.43%, 12~14시 예측 모형에서는 3.60%, 13시 예측 모형에서는 3.88%만큼 오차가 감소하였다. 특히 발전량이 많은 주간 시간대에 미세먼지 농도를 반영하는 모형의 예측 정확도가 더 뛰어난 것으로 나타났다.

기계학습을 이용한 돈사 급수량 예측방안 개발 (Prediction of Water Usage in Pig Farm based on Machine Learning)

  • 이웅섭;류종열;반태원;김성환;최희철
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1560-1566
    • /
    • 2017
  • 최근 사물 인터넷 센서가 설치된 스마트 돈사의 보급을 통해 돈사 관련 빅데이터 축적이 가능해졌고, 다양한 기계 학습방안들이 수집된 데이터에 적용되어 축산농가의 생산성을 향상시키고 있다. 본 연구에서는 다양한 기계학습 방안을 이용하여 돈사관리에서 가장 중요한 요소 중 하나인 급수량을 예측하였다. 구체적으로 실제 돈사에서 수집된 데이터에 회귀 방안인 선형회귀, 회귀트리 및 아다부스트 회귀 방안과 분류 방안인 로지스틱 분류, 결정트리 및 서포트 벡터 머신 (SVM) 분류방안을 적용하여 돈사의 온도와 습도를 기반으로 급수량을 예측하였다. 성능 분석을 통해서 제안한 방안이 높은 정확도로 급수량을 예측하는 것을 확인할 수 있었다. 제안한 방안은 돈사의 급수시설 이상을 조기에 파악하는데 활용되어 가축을 폐사를 막고 돈사 생산성을 높이는데 활용될 수 있다.