• Title/Summary/Keyword: Forecast accuracy

Search Result 487, Processing Time 0.026 seconds

Forecasting Demand for Food & Beverage by Using Univariate Time Series Models: - Whit a focus on hotel H in Seoul - (단변량 시계열모형을 이용한 식음료 수요예측에 관한 연구 - 서울소재 특1급 H호텔 사례를 중심으로 -)

  • 김석출;최수근
    • Culinary science and hospitality research
    • /
    • v.5 no.1
    • /
    • pp.89-101
    • /
    • 1999
  • This study attempts to identify the most accurate quantitative forecasting technique for measuring the future level of demand for food & beverage in super deluxe hotel in Seoul, which will subsequently lead to determining the optimal level of purchasing food & beverage. This study, in detail, examines the food purchasing system of H hotel, reviews three rigorous univariate time series models and identify the most accurate forecasting technique. The monthly data ranging from January 1990 to December 1997 (96 observations) were used for the empirical analysis and the 1998 data were left for the comparison with the ex post forecast results. In order to measure the accuracy, MAPE, MAD and RMSE were used as criteria. In this study, Box-Jenkins model was turned out to be the most accurate technique for forecasting hotel food & beverage demand among selected models generating 3.8% forecast error in average.

  • PDF

A Component-wise Load Forecasting by Adaptable Artificial Neural Network (적응력을 갖는 신경회로망에 의한 성분별 부하 예측)

  • Lim, Jae-Yoon;Kim, Jin-Soo;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.21-23
    • /
    • 1994
  • The degree of forecast accuracy with BP-algorithm largely depends upon the neuron number in hidden layer. In order to construct the optimal structure, first, we prescribe the error bounds of learning procedure, and then, we provid the method of incrementing the number of hidden neurons by using the derivative of errors with respect to an output neuron weights. For the case study, we apply the proposed method to forecast the component-wise residential load, and compare this results to that of time series forecasting.

  • PDF

Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models (투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측)

  • Chae-Deug Yi
    • Korea Trade Review
    • /
    • v.46 no.2
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

A Binomial Weighted Exponential Smoothing for Intermittent Demand Forecasting (간헐적 수요예측을 위한 이항가중 지수평활 방법)

  • Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Intermittent demand is a demand with a pattern in which zero demands occur frequently and non-zero demands occur sporadically. This type of demand mainly appears in spare parts with very low demand. Croston's method, which is an initiative intermittent demand forecasting method, estimates the average demand by separately estimating the size of non-zero demands and the interval between non-zero demands. Such smoothing type of forecasting methods can be suitable for mid-term or long-term demand forecasting because those provides the same demand forecasts during the forecasting horizon. However, the smoothing type of forecasting methods aims at short-term forecasting, so the estimated average forecast is a factor to decrease accuracy. In this paper, we propose a forecasting method to improve short-term accuracy by improving Croston's method for intermittent demand forecasting. The proposed forecasting method estimates both the non-zero demand size and the zero demands' interval separately, as in Croston's method, but the forecast at a future period adjusted by binomial weight according to occurrence probability. This serves to improve the accuracy of short-term forecasts. In this paper, we first prove the unbiasedness of the proposed method as an important attribute in forecasting. The performance of the proposed method is compared with those of five existing forecasting methods via eight evaluation criteria. The simulation results show that the proposed forecasting method is superior to other methods in terms of all evaluation criteria in short-term forecasting regardless of average size and dispersion parameter of demands. However, the larger the average demand size and dispersion are, that is, the closer to continuous demand, the less the performance gap with other forecasting methods.

Improvement of the Ensemble Streamflow Prediction System Using Optimal Linear Correction (최적선형보정을 이용한 앙상블 유량예측 시스템의 개선)

  • Jeong, Dae-Il;Lee, Jae-Kyoung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.471-483
    • /
    • 2005
  • A monthly Ensemble Streamflow Prediction (ESP) system was developed by applying a daily rainfall-runoff model known as the Streamflow Synthesis and Reservoir Regulation (SSARR) model to the Han, Nakdong, and Seomjin River basins in Korea. This study first assesses the accuracy of the averaged monthly runoffs simulated by SSARR for the 3 basins and proposes some improvements. The study found that the SSARR modeling of the Han and Nakdong River basins tended to significantly underestimate the actual runoff levels and the modeling of the Seomjin River basinshowed a large error variance. However, by implementing optimal linear correction (OLC), the accuracy of the SSARR model was considerably improved in predicting averaged monthly runoffs of the Han and Nakdong River basins. This improvement was not seen in the modeling of the Seomjin River basin. In addition, the ESP system was applied to forecast probabilistic runoff forecasts one month in advance for the 3 river basins from 1998 to 2003. Considerably improvement was also achieved with OLC in probabilistic forecasting accuracy for the Han and Nakdong River basins, but not in that of the Seomjin River basin.

A study on the short-term load forecasting expert system considering the load variations due to the change in temperature (기온변화에 의한 수요변동을 고려한 단기 전력수요예측 전문가시스템의 연구)

  • Kim, Kwang-Ho;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.187-193
    • /
    • 1995
  • In this paper, a short-term load forecasting expert system considering the load variation due to the change in temperature is presented. The change in temperature is an important load variation factor that varies the normal load pattern. The conventional load forecasting methods by artificial neural networks have used the technique where the temperature variables were included in the input neurons of artificial neural networks. However, simply adding the input units of temperature data may make the forecasting accuracy worse, since the accuracy of the load forecasting in this method depends on the accuracy of weather forecasting. In this paper, the fuzzy expert system that modifies the forecasted load using fuzzy rules representing the relations of load and temperature is presented and compared with a conventional load forecasting technique. In the test case of 1991, the proposed model provided a more accurate forecast than the conventional technique.

  • PDF

Suggesting Forecasting Methods for Dietitians at University Foodservice Operations

  • Ryu Ki-Sang
    • Nutritional Sciences
    • /
    • v.9 no.3
    • /
    • pp.201-211
    • /
    • 2006
  • The purpose of this study was to provide dietitians with the guidance in forecasting meal counts for a university/college foodservice facility. The forecasting methods to be analyzed were the following: naive model 1, 2, and 3; moving average, double moving average, simple exponential smoothing, double exponential smoothing, Holt's, and Winters' methods, and simple linear regression. The accuracy of the forecasting methods was measured using mean squared error and Theil's U-statistic. This study showed how to project meal counts using 10 forecasting methods for dietitians. The results of this study showed that WES was the most accurate forecasting method, followed by $na\ddot{i}ve$ 2 and naive 3 models. However, naive model 2 and 3 were recommended for using by dietitians in university/college dining facilities because of the accuracy and ease of use. In addition, the 2000 spring semester data were better than the 2000 fall semester data to forecast 2001spring semester data.

Comparison of accuracy between LC model and 4-PFM when COVID-19 impacts mortality structure

  • Choi, Janghoon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.233-250
    • /
    • 2021
  • This paper studies if the accuracies of mortality models (LC model vs. 4-parametric model) are aggravated if a mortality structure changes due to the impact of COVID-19. LC model (LCM) uses dimension reduction for fitting to the log mortality matrix so that the performance of the dimension reduction method may not be good when the matrix structure changes. On the other hand, 4-parametric factor model (4-PFM) is designed to use factors for fitting to log mortality data by age groups so that it would be less affected by the change of the mortality structure. In fact, the forecast accuracies of LCM are better than those of 4-PFM when life-tables are used whereas those of 4-PFM are better when the mortality structure changes. Thus this result shows that 4-PFM is more reliable in performance to the structural changes of the mortality. To support the accuracy changes of LCM the functional aspect is explained by computing eigenvalues produced by singular vector decomposition

Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology (기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론)

  • Choi, Hochang;Kwahk, Kee-Young;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.101-124
    • /
    • 2018
  • Recently, most of the technologies have been developed in various forms through the advancement of single technology or interaction with other technologies. Particularly, these technologies have the characteristic of the convergence caused by the interaction between two or more techniques. In addition, efforts in responding to technological changes by advance are continuously increasing through forecasting promising convergence technologies that will emerge in the near future. According to this phenomenon, many researchers are attempting to perform various analyses about forecasting promising convergence technologies. A convergence technology has characteristics of various technologies according to the principle of generation. Therefore, forecasting promising convergence technologies is much more difficult than forecasting general technologies with high growth potential. Nevertheless, some achievements have been confirmed in an attempt to forecasting promising technologies using big data analysis and social network analysis. Studies of convergence technology through data analysis are actively conducted with the theme of discovering new convergence technologies and analyzing their trends. According that, information about new convergence technologies is being provided more abundantly than in the past. However, existing methods in analyzing convergence technology have some limitations. Firstly, most studies deal with convergence technology analyze data through predefined technology classifications. The technologies appearing recently tend to have characteristics of convergence and thus consist of technologies from various fields. In other words, the new convergence technologies may not belong to the defined classification. Therefore, the existing method does not properly reflect the dynamic change of the convergence phenomenon. Secondly, in order to forecast the promising convergence technologies, most of the existing analysis method use the general purpose indicators in process. This method does not fully utilize the specificity of convergence phenomenon. The new convergence technology is highly dependent on the existing technology, which is the origin of that technology. Based on that, it can grow into the independent field or disappear rapidly, according to the change of the dependent technology. In the existing analysis, the potential growth of convergence technology is judged through the traditional indicators designed from the general purpose. However, these indicators do not reflect the principle of convergence. In other words, these indicators do not reflect the characteristics of convergence technology, which brings the meaning of new technologies emerge through two or more mature technologies and grown technologies affect the creation of another technology. Thirdly, previous studies do not provide objective methods for evaluating the accuracy of models in forecasting promising convergence technologies. In the studies of convergence technology, the subject of forecasting promising technologies was relatively insufficient due to the complexity of the field. Therefore, it is difficult to find a method to evaluate the accuracy of the model that forecasting promising convergence technologies. In order to activate the field of forecasting promising convergence technology, it is important to establish a method for objectively verifying and evaluating the accuracy of the model proposed by each study. To overcome these limitations, we propose a new method for analysis of convergence technologies. First of all, through topic modeling, we derive a new technology classification in terms of text content. It reflects the dynamic change of the actual technology market, not the existing fixed classification standard. In addition, we identify the influence relationships between technologies through the topic correspondence weights of each document, and structuralize them into a network. In addition, we devise a centrality indicator (PGC, potential growth centrality) to forecast the future growth of technology by utilizing the centrality information of each technology. It reflects the convergence characteristics of each technology, according to technology maturity and interdependence between technologies. Along with this, we propose a method to evaluate the accuracy of forecasting model by measuring the growth rate of promising technology. It is based on the variation of potential growth centrality by period. In this paper, we conduct experiments with 13,477 patent documents dealing with technical contents to evaluate the performance and practical applicability of the proposed method. As a result, it is confirmed that the forecast model based on a centrality indicator of the proposed method has a maximum forecast accuracy of about 2.88 times higher than the accuracy of the forecast model based on the currently used network indicators.

Drought index forecast using ensemble learning (앙상블 기법을 이용한 가뭄지수 예측)

  • Jeong, Jihyeon;Cha, Sanghun;Kim, Myojeong;Kim, Gwangseob;Lim, Yoon-Jin;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.1125-1132
    • /
    • 2017
  • In a situation where the severity and frequency of drought events getting stronger and higher, many studies related to drought forecast have been conducted to improve the drought forecast accuracy. However it is difficult to predict drought events using a single model because of nonlinear and complicated characteristics of temporal behavior of drought events. In this study, in order to overcome the shortcomings of the single model approach, we first build various single models capable to explain the relationship between the meteorological drought index, Standardized Precipitation Index (SPI), and other independent variables such as world climate indices. Then, we developed a combined models using Stochastic Gradient Descent method among Ensemble Learnings.