• 제목/요약/키워드: Forced concerted mechanism

검색결과 6건 처리시간 0.023초

Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2719-2723
    • /
    • 2012
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in MeCN. The plot of pseudo-first-order rate constant ($k_{obsd}$) vs. [amine] curves upward, which is typical for reactions reported previously to proceed through a stepwise mechanism with two intermediates (i.e., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). Dissection of $k_{obsd}$ into the second- and third-order rate constants (i.e., $Kk_2$ and $Kk_3$, respectively) reveals that $Kk_3$ is significantly larger than $Kk_2$, indicating that the reactions proceed mainly through the deprotonation pathway (i.e., the $k_3$ process) in a high [amine] region. This contrasts to the recent report that the corresponding aminolysis of benzyl 2-pyridyl carbonate 5 proceeds through a forced concerted mechanism. An intramolecular H-bonding interaction was suggested to force the reactions of 5 to proceed through a concerted mechanism, since it could accelerate the rate of leaving-group expulsion (i.e., an increase in $k_2$). However, such H-bonding interaction, which could increase $k_2$, is structurally impossible for the reactions of 6. Thus, presence or absence of an intramolecular H-bonding interaction has been suggested to be responsible for the contrasting reaction mechanisms (i.e., a forced concerted mechanism for the reaction of 5 vs. a stepwise mechanism with $T^{\pm}$ and $T^-$ as intermediates for that of 6).

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.

Kinetics and Mechanism of Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Carbonates

  • Kim, Song-I;Hwang, So-Jeong;Jung, Eun-Mi;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.2015-2018
    • /
    • 2010
  • Second-order rate constants $(k_{OH^-})$ have been measured spectrophotometrically for alkaline hydrolysis of Y-substituted phenyl phenyl carbonates (2a-j) and compared with the $k_{OH^-}$ values reported previously for the corresponding reactions of Y-substituted phenyl benzoates (1a-j). Carbonates 2a-j are 8~16 times more reactive than benzoates 1a-j. The Hammett plots correlated with $\sigma^-$ and $\sigma^o$ constants exhibit many scattered points, while the Yukawa-Tsuno plot results in excellent linear correlation with $\rho$ = 1.21 and $\gamma$ = 0.33. Thus, the reaction has been concluded to proceed through a concerted mechanism in which expulsion of the leaving group is advanced only a little. However, one cannot exclude a possibility that the current reaction proceeds through a forced concerted mechanism with a highly unstable intermediate.

Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2269-2273
    • /
    • 2012
  • Pseudo-first-order rate constants $k_{amine}$ have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{amine}$ vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$. This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The $k_{amine}$ values for the reactions of 6 have been dissected into the second-order rate constant $Kk_2$ and the thirdorder rate constant $Kk_3$. The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}=0.94$ and 1.18 for $Kk_2$ and $Kk_3$, respectively. The $Kk_2$ for the reaction of 6 is smaller than the second-order rate constant $k_N$ for the corresponding reaction of 5, although 4-pyridyloxide in 6 is less basic and a better nucleofuge than 2-pyridyloxide in 5.

Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Thionocarbonates: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

  • Kim, Song-I;Park, Hey-Ran;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.179-182
    • /
    • 2011
  • Second-order rate constants ($k_{OH^-}$) have been measured spectrophotometrically for reactions of Y-substituted phenyl phenyl thionocarbonates (4a-i) with $OH^-$ in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The $k_{OH^-}$ values for the reactions of 4a-i have been compared with those reported previously for the corresponding reactions of Y-substituted phenyl phenyl carbonates (3a-i) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and mechanism. Thionocarbonates 4a-i are less reactive than the corresponding carbonates 3a-i although 4a-i are expected to be more reactive than 3a-i. The Bronsted-type plot for reactions of 4a-i is linear with $\beta_{lg}$ = -0.33, a typical $\beta_{lg}$ value for reactions reported to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step (RDS). Furthermore, the Hammett plot correlated with $\sigma^o$ constants results in much better linearity than that correlated with $\sigma^-$ constants, indicating that expulsion of the leaving group is not advanced in the RDS. Thus, alkaline hydrolysis of 4a-i has been concluded to proceed through a stepwise mechanism with formation of an intermediate being RDS, which is in contrast to the forced concerted mechanism reported for the corresponding reactions of 3a-i. Enhanced stability of the intermediate upon modification of the electrophilic center from C=O to C=S has been concluded to be responsible for the contrasting mechanisms.

A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism

  • Kang, Ji-Sun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2971-2975
    • /
    • 2012
  • Second-order rate constants $k_N$ have been measured spectrophotometrically for nucleophilic substitution reactions of t-butyl 4-pyridyl carbonate 8 with a series of alicyclic secondary amines in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 8 is linear with ${\beta}_{nuc}$ = 0.84. The ${\beta}_{nuc}$ value obtained for the reactions of 8 is much larger than that reported for the corresponding reactions of t-butyl 2-pyridyl carbonate 6 (i.e., ${\beta}_{nuc}$ = 0.44), which was proposed to proceed through a forced concerted mechanism. Thus, the aminolysis of 8 has been concluded to proceed through a stepwise mechanism with a zwitterionic tetrahedral intermediate $T^{\pm}$, in which expulsion of the leaving-group from $T^{\pm}$ occurs at the rate-determining step (RDS). In contrast, aminolysis of benzyl 4-pyridyl carbonate 7 has been reported to proceed through two intermediates, $T^{\pm}$ and its deprotonated form $T^-$ on the basis of the fact that the plots of pseudo-first-order rate constant $k_{obsd}$ vs. amine concentration curve upward. The current study has demonstrated convincingly that the nature of the leaving and nonleaving groups governs the reaction mechanism. The contrasting reaction mechanisms have been rationalized in terms of an intramolecular H-bonding interaction, steric acceleration, and steric inhibition.